EU-PWI TF meeting, Madrid, 29-31 October 2007 Progress with tritium removal and mitigation 2006-7 G. Counsell 1, P. Coad 1, J.A. Ferreira 8, M. Rubel 6,

Slides:



Advertisements
Similar presentations
1 Th LoarerGas balance and fuel retention – EU TF on PWI – 13 November 2006 Th Loarer with contributions from C. Brosset 1, J. Bucalossi 1, P Coad 2, G.
Advertisements

J. Roth, EU PWI TF, SEWG Fuel Retention, Cadarache, June 15, 09 Tritium inventory: Joint international scaling for ITER WP09-PWI-01-01/IPP/PS Status by.
How to do wall conditioning in ITER ? # B tor cycles is limited GDC inefficient in B Drawbacks of ECWC, Taylor Ion cyclotron wall conditioning (ICWC) J.
Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
EU Plasma-Wall Interaction TF – Meeting Frascati SEWG Erosion & Transport S. Brezinsek Institut für Energieforschung –Plasmaphysik.
EU-PWI TF meeting, Caderache, October 2005 Progress with T-recovery techniques P Coad 1, GF Counsell 1, G. Dinescu 6, H. G. Esser 4, JA Ferreira.
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
E. Tsitrone, EU PWI TF meeting, oct 2007, Madrid1 E. Tsitrone, J. Roth, A. Loarte, J. Paméla The EU-PWI Task Force: Task agreements for 2008 EU PWI.
A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
Laboratorio Nacional de Fusión Asociación EURATOM-CIEMAT PWI activities at CIEMAT (Madrid) presented by F. Tabarés Laboratorio Nacional de Fusión por Confinamiento.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
EU-PWI TF meeting, Ljubljana November 2006 Studies of Plasma-Wall Interactions Association IPPLM / EURATOM, Poland Presented by Elzbieta Fortuna.
TORE SUPRA Association EURATOM-CEA Philipps, Huber, Schweer, Sergienko, Brezinsek, Mertens, Zlobinski & Grisolia, Hernandez, Roche, Pocheau, Davi, Semerok.
M. Mayer SEWG Fuel Retention June Sample Analysis for TS, AUG and JET: Depth Profiling of Deuterium M. Mayer Max-Planck-Institut für Plasmaphysik,
WP10-PWI (02)/TEKES/BS(PS) Characterization of retention mechanisms in AUG Monitoring meeting of the EFDA PWI SEWG on Gas Balance and Fuel Retention,
SEWG Meeting HIGH-Z, Ljubljana, October 2009 I. Tungsten distribution on limiters after WF 6 injection in TEXTOR II. SEM and EDX of Melted Tungsten Rods.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
Report on EU Dust activities C. Grisolia Frascati, October 2008.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
SIMS and RBS analysis of the recent 13 CH 4 experiment J. Likonen, P. Coad, A. Hakola, D. Hole, M. Rubel, J. Strachan, A. Widdowson Joint TFE-SEWG meeting.
Experiments about carbon removal and codeposit inhibition J.A. Ferreira, F.L. Tabarés, W. Bohmeyer and A. Markin, I. Tanarro, V. Herrero.
EU-PWI TF meeting, Ljubljana, November 2006 Progress with tritium removal and mitigation G Counsell 1, D Borodin 4, P Coad 1, J Ferreira 8,
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
EU Plasma-Wall Interaction TF – Meeting FZJ SEWG Chemical Erosion S. Brezinsek TEC 1 Report of the Special Expert Working Group on Chemical.
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
Kazuyoshi Sugiyama, SEWG meeting on Fuel retention, Garching, July Contribution of Boron on the D retention in the AUG full-W wall regime Max-Planck-Institut.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
Tungsten distribution on limiters after WF 6 injection in TEXTOR M. Rubel, D. Ivanova Alfv é n Laboratory, Royal Institute of Technology, Association EURATOM.
1TPL Dismantling Project Review 08/12/06 Bernard Pégourié TORE SUPRA Association EURATOM-CEA D program: Specific experiments before dismantling Purpose:
Joint SEWGs-TFE meeting S. Brezinsek22/07/2008 TF E Impact of N 2 on carbon chemistry in JET S. Brezinsek, Y. Corre and TFE.
Institut für Energieforschung - Plasmaphysik EURATOM Assoziation – FZJ TEC A. Litnovsky et al., Meeting of the EU TF PWI SEWG on mixed materials, JET,
EU PWI Task Force V. Philipps, SEWG mixed materials, JET ITER-like Wall Project : Material choice, issues to investigate and role of new SEWG ITER-like.
1. Qualifying carbon as PFC Erosion (see report S. Brezinsek ) along plasma wetted areas, effect of substrate Local C migration to gaps Fuel retention.
V.Philipps, SEWG Gas balance and fuel removal, JET, , Association EURATOM – FZJ Effect of disruptions on fuel release from JET walls V. Philipps,
TFE Th Loarer – SEWG – 12 September Euratom Th Loarer V Philipps 2, J Bucalossi 1, D Brennan 3, J Brzozowski 4, N Balshaw 3, R Clarke 3, G Esser.
1B. PégouriéDITS progress report 27/04/07 Euratom EXPERIMENTAL CAMPAIGN No reliable estimation of the wall inventory WI ~ ??? D atoms (Tsitrone,
D retention and release behaviour of Be/C/W mixed materials
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
Member of the Helmholtz Association Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ A. Litnovsky et al., Progress report on the.
Alberto Loarte EU Plasma-Wall Interaction Task Force Meeting – CEA – Cadarache 17 – 10– EU-PWI Task Force & EFDA Plasma Edge Technology Programme.
Mixed materials in JET 2006 J P Coad Present JET situation Deposited films at the inner divertor (plasma-facing surfaces) Films deposited in shadowed areas.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
P. Pelicon, I. Čadež, S. Markelj, Z. Rupnik, P. Vavpetič, N. Grlj Jožef Stefan Institute, Association EURATOM-MHEST, Jamova 39, SI-1000 Ljubljana, Slovenia.
Member of the Helmholtz Association Carbon based materials: fuel retention and erosion under ITER-like mixed species plasma conditions Arkadi Kreter et.
P. Coad, J. Likonen, H. Bergsåker, M. Rubel, I. Uytdenhouwen, A. Widdowson JET mixed Be/C/O layers SEWG meeting on mixed materials, , JET.
1SEWG Fuel removal - Glow improvement for JET D. Douai22-23 July 2008 EFDA Task Glow discharge improvement for JET D. Douai 1, D. Garnier 1, S. Brémond.
1E. Tsitrone PWI TF meeting, 27-29/10/2008, Frascati Euratom 2009 WP for the PWI TF : Tasks agreements and priority support The EU PWI TF under new EFDA.
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Co-deposition/Co-implantation R. Doerner, M. Baldwin, G. De Temmerman, D. Nishijima UCSD K. Schmid, Ch.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
6 th EU PWI TF Meeting Madrid, Oct Tritium Inventory in ITER: Laboratory data and extrapolation from tokamaks Th Loarer, J Roth, S Brezinsek, A.
1 PWI - related work at VR Marek Rubel (VR) Projects within ILW : Beryllium coatings for inner wall cladding (with MEC, UKAEA, FZJ, UCSD, TEKES) Development.
9th International Workshop on Hydrogen Isotopes in Fusion Reactor materials, Salamanca, Spain, June 2 -3, Behaviour of tritium accumulated in the.
Analysis of samples exposed to Pilot–PSI Plasma P. Paris, A. Hakola, K. Bystrov, G. De Temmerman, M. Aints, I. Jõgi, M. Kiisk, J. Kozlova, M. Laan, J.
Effects of ICRF conditioning on the first wall in LHD N. Ashikawa, K. Saito, T. Seki, M. Tokitani, Y. Ohtawa 1), M. Nishiura, S. Masuzaki K. Nishimura.
Co-deposition of deuterium and impurities in plasma-wall interaction simulators Marek Rubel a, Per Petersson a, Arkadi Kreter b a Alfvén Laboratory, KTH,
J.P. Coad 1 H Workshop, Salamanca 3 June 2008 Local deposition of 13C tracer at the JET MkII-SRP outer divertor J Paul Coad Hydrogen Workshop, Salamanca,
1Th LoarerGas balance and fuel retention – IAEA Chengdu – 18 October 2006 TEC Euratom Th Loarer with contributions from C. Brosset 1, J. Bucalossi 1, P.
ITPA-9, Avila, Spain, Impact of ICRF on impurity production in TEXTOR Presented by Marek Rubel Alfvén Laboratory, Royal Institute of Technology,
HU Berlin Plasmaphysik The Scavenger Effect - does it work? W. Bohmeyer* a,d, F.L. Tabares b, M. Baudach a,g, A. Cwiklinski e, T. Schwarz-Selinger g, A.
Laboratorio Nacional de Fusión 1/13 CLEANING EFFICIENCY OF CARBON FILMS BY OXYGEN PLASMAS IN THE PRESENCE OF METALLIC GETTERS Francisco L. Tabarés, J.A.
PSI 2008 Toledo May 2008 © Matej Mayer Carbon balance and deuterium inventory from a carbon dominated to a full tungsten ASDEX Upgrade M. Mayer a, V. Rohde.
Photonic T removal techniques in the EU G Counsell 1, P Coad 1, C Grisolia 2, A. Semerok 3, A Widdowson 1 1 EURATOM/UKAEA Fusion Association, Culham Science.
Background Long term tritium retention is one of the most critical issues for ITER during the tritium phase. It is mandatory to evaluate the long term.
EAST ASIPP ICR-Wall conditioning in EAST J.S Hu, J.G Li and EAST Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei, Anhui.
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
Dynamic fuel retention and release under ITER like wall conditions in JET V. Philipps 1, T. Loarer 2, M. Freisinger 1, H.G.Esser 1, S. Vartanian 2, U.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Surface Analysis of Graphite Limiter and W-coating Testing on HT-7
Analysis of samples exposed to Pilot–PSI Plasma
Presentation transcript:

EU-PWI TF meeting, Madrid, October 2007 Progress with tritium removal and mitigation G. Counsell 1, P. Coad 1, J.A. Ferreira 8, M. Rubel 6, F.L. Tabares 8, A. Widdowson 1, P. Sundelin 6, V. Philipps 4, G. Sergienko 4, D. Tafalla 8, I. Tanarro 8, V. Herrero 8, C. Gómez-Aleixandre, J.M. Albella 8, P.Gąsior 9, J. Wolowski 9, J. Likonen 5, C Grisolia 2, A. Semerok 7, C Hopf 3, W Jacob 3, M. Schlüter 3, D Farcage 7, D Hole 10, T Renvall 10, P-Y Thro 7 1 EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK 2 Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, St.Paul lez Durance, France 3 Max-Planck-Institut für Plasmaphysik, EURATOM Association, D Garching, Germany 4 Institut für Plasmaphysik, Forschungszentrum Jülich, Association EURATOM-FZJ 5 Association EURATOM-TEKES, VTT Processes, PO Box 1608, VTT, Espoo, Finland 6 Alfvén Laboratory, Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm, Sweden 7 CEA Saclay, DEN/DPC/SCP/LILM, Bat. 467,91191Gif sur Yvette, France 8 Association Euratom/Ciemat. Laboratorio Nacional de Fusión Madrid, Spain 9 Institute of Plasma Physics and Laser Microfusion, Association EURATOM – IPPLM, Warsaw, Poland 10 Dept. of Engineering and Design, University of Sussex, Brighton, East Sussex, UK

2/28 Outline Effects of Nitrogen on a-C/D erosion and deposition Effects of Oxygen on a-C/D erosion Photonic cleaning techniques SEWG Work Programme

3/28 Effects of Nitrogen on a-C/D erosion and deposition

+ ~ 3:9x10 12 cm 2 /s 400:1 H 0 :N 2 + M Schlüter, C Hopf and W Jacob N 2 + /H 0 particle beam exposure Exposure of a-C:D films in MAJESTIX Yield with N 2 + chemical sputtering Adding H 0 significantly increases yield synergistic effect

Ions create broken bonds React with H 0 forming volatile C x H y species M Schlüter, C Hopf and W Jacob Ions create broken bonds Slow N 0 at end of ion range react to produce volatile C x N y species N 2 + /H 0 particle beam exposure 2 processes needed to explain N 2 + /H 0 erosion:

Nitrogen scavenging a-C/D on Si (heatable), N 2 PSI-2, Berlin FL Tabares et al No significant ion flux to a-C/D sample

T= 60ºC T=80 ºC CH 4 H2H2 N 2 +CH 4 N 2 addition supresses deposition – net erosion Effect not seen with Ne Cumulative effect - N 2 required for scavenging decreases with exposure Nitrogen scavenging FL Tabares et al

# LFS HFS Nitrogen-assisted ICRF discharges ICRF H 2 /N 2 plasma in TEXTOR 40 kW, 29 MHz B ~ 2.3 T, B v ~ 0.04T 0.04 Pa 3 - 6x10 17 m -3 N 2 /(N 2 +H 2 ) ~ V. Philipps et al Plasma recovery possible but with high radiation fraction Nitrogen retained in the wall and fuels the plasma Hydrogen recycling flux reduced by factor 2

Nitrogen-assisted ICRF discharges 40 s Exposure of: Pre-boronised layer on Silicon a-C:D laboratory layer on Silicon Uncoated Inconel Silicon probes: no visible change in topography after exposure. Inconel probe: carbon layer formed during exposure. P. Sundelin, M. Rubel, V. Philipps, G. Sergienko Analysis:SEM, X-ray spectroscopy, IBA No evidence for enhanced erosion rate with N 2

SampleD in D ex B in B ex C in C ex H 2 -N 2 plasma + ICRF O 2 -He glow Inconel B on Si a-C:D/Si a-C:D/Si B on Si P. Sundelin, M. Rubel, V. Philipps, G. Sergienko Nitrogen-assisted ICRF discharges Units of cm -2

Deeper understanding, but …. Story on nitrogen still seems confused or even contradictory May offer options for: reduction of deposition in remote areas High a:C/D removal rates without Oxygen in some circumstances Section summary

Effects of Oxygen on a-C/D erosion

C. Hopf, W. Jacob, V. Rohde Oxidation cleaning relies on phys < chem phys (C, Al, Fe) approach chem for a-C/H at high E ion phys (W) always more than factor 10 lower is lower than TRIM for O on AL, W – surface oxide effect Selectivity in oxidation

Laser interfermoetry Cross-checked with: - Profilometry - XPS - C balance in glow 1 fringe= /2n..144nm n hard C …2.2 Impact of material mixing Photodiode He,Ar CH 4 O 2 Oven Turbo pump Oven T~600ºC Glow Discharge Laser (Li, Mg) Francisco L. Tabarés, J.A. Ferreira, D. Tafalla, I. Tanarro, V. Herrero, C. Gómez-Aleixandre, J.M. Albella

BeOMgO C (kJ/mol) (g/cm 3 ) Melting point (K) Oxidation of Mg/a-C/H mix Mg: good analogue for Be Oxides have similar characteristics Low electrical conductivity high thermal conductivity Uniformly distributed Mg in a-C/H layers produced Etching by He/O 2 glow discharge plasma: Constant erosion rate O balance: Not matched Similar rate as in pure C Interfermeter fringes RGA Francisco L. Tabarés, J.A. Ferreira, D. Tafalla, I. Tanarro, V. Herrero, C. Gómez-Aleixandre, J.M. Albella

Film RGA CC/Li layerC/Li mixedC/Mg mixed O2O2 1.8e-61.1e-63.3e-61.2e-6 O e-63.8e-72.7e-69.13e-7 CO9.06e-71.5e-71.1e-66.08e-7 CO e-72.9e-82.0e-78.64e-8 H2H2 3.5e-61.4e-77.0e-64.07e-6 Erosion rate (nm/s) CO+2CO 2 / O Erosion rates and products ~unaffected in homogenous a-(C+M)/H films (M=Li,Mg) Film structure may have significant impact Oxidation of Mg/a-C/H mix Francisco L. Tabarés, J.A. Ferreira, D. Tafalla, I. Tanarro, V. Herrero, C. Gómez-Aleixandre, J.M. Albella

Oxidation of B/a-C/H mix C. Hopf, W. Jacob, V. Rohde He/O 2 GDC (-60V bias ) of boronated hydrocarbon layers in GDCC Significant fall in removal rate from pure-C to pure-B levels Impurity accumulation Differences between B and metallic impurities?

He/O 2 ICRF discharges CO and CO 2 products (about 75%) released mostly after ICRF pulses C removal rate O 2 injection rate Neutral pressure at the antenna box (~1x10 -1 Pa) determines max O 2 inj. TEXTOR Re-conditioning attempted by ICRF conditioning D 2 /He Successive wall cleaning with ICRF was necessary Recovery procedure accompanied by tokamak disruptions (10 disruptive shots). Further optimization necessary V. Philipps et al

Concerns over selectivity Some confusion over impact of non-volatile impurities – effect of film structure? Further in-vessel testing conducted Section summary

Photonic cleaning techniques

Laser cleaning of JET divertor tiles A Widdowson, J P Coad, D Farcage, D Hole, J Likonen, T Renvall, A Semerok, P-Y Thro Very effective at a-C/H removal – up to 3m 2 / m/hr Some issues with selectivity CFC substrate can be damaged – optimisaton needed

Laser cleaning of TEXTOR tiles J. Wolowski, M Rubel, V. Philipps, IPP ASCR (Prague, CR) Characterised with - ion time of flight optical spectrocopy

Surface profile complicates optimisation Laser cleaning alignment Variation in focal-point to tile distance 8mm movement ½ power A Widdowson, J P Coad, D Farcage, D Hole, J Likonen, T Renvall, A Semerok, P-Y Thro

Products of Laser cleaning T-released to stack in each region Only 10% (at most) of estimated inventory at treated locations non-gaseous products? A Widdowson, J P Coad, D Farcage, D Hole, J Likonen, T Renvall, A Semerok, P-Y Thro

Video of laser cleaning Evidence of particulates Products of Laser cleaning Dust probably contains bulk of T released May be unavoidable with this wavelength Integrated dust collection necessary A Widdowson, J P Coad, D Farcage, D Hole, J Likonen, T Renvall, A Semerok, P-Y Thro

Analysis methods: 3 He + NRA at 2 MeV and microscopy. Graphite plates with TEXTOR co-deposits: C D = up to cm 2 Dust collected from metal plate adjacent to target: C D = 3.9x10 17 cm 2 Dust produced by laser cleaning still contains significant fuel P.Gąsior, P. Sundelin, M. Rubel Dust during TEXTOR tile cleaning Important note: Single result Must be verified by other fully quantitative studies.

Laser cleaning effective at a-C/H removal Selectivity is an issue – need to maintain focus and optimise speed, step size etc. Dust produced may contain bulk of tritium released – need for collection scheme Section summary

Work Programme for the SEWG on fuel removal

Long term objectives: Develop an integrated scenario for fuel removal in ITER Derive a credible tritium inventory control scheme relying on developed cleaning techniques to meet ITER operational requirements. Assess combined efficiency, removal rates and schedule needed. Assess efficiency (if any) with hydrogenic retention in metals for developed fuel removal technologies (chemical and photonic) Begin exploration of new fuel removal technologies, targeted at hydrogenic retention in metals (for ITER with future all-metal divertor) SEWG – Fuel Removal

Objectives for 2008: i. Quantify impact of metallic impurities ii. Resolve the impact of nitrogen molecules iii. Explore impact of repetitive oxidising plasmas (GDC/RF) on beryllium bulk iv. Demonstrate beryllium oxide removal rates v. Demonstrate removal of co-deposit trapped in ITER-relevant tile gaps vi. Further advance chemical and photonic cleaning methods towards an ITER relevant system