EXTENDED SPACE CHARGE EFFECTS IN CONCENTRATION POLARIZATION Isaak Rubinstein and Boris Zaltzman Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Israel
Anomalous Rectification Copper deposition from 0.002N CuSO 4 solution 0.1V, 1MHz Dukhin’s Vortex E= 100V cm −1 Electrokinetic flow around a 1mm ion exchange granule S. Dukhin, N. Mischuk and P.Takhistov Coll. J. USSR89 Y. Ben and H.-C. Chang JFM02 I.R, Israel Rubinstein and E. Staude PCH85
S. J. Kim, Y.-Ch. Wang, J. H. Lee, H. Jang, and Jongyoon Han PRL 07 Windshield Wiper’s Effect
S.M. Rubinstein, G. Manukyan, A. Staicu, I. R., B. Zaltzman, R.G.H. Lammertink, F. Mugele, and M. Wessling PRL08 Nonequilibrium Electroosmotic Instability
Voltage-current curve of a C-membrane Current power spectra Overlimiting Conductance F. Maletzki, H.W. Rosler and E. Staude, JMS92
Electrodialysis applications J. Balster, M. Yildirim, R. Ibanez, R. Lammertink, D. Jordan, and M. Wessling, JPC B07 Top view 50 to 550 µm Cross section 50 µm 20µm
Classical picture of Concentration Polarization Stirred Bulk Cation-exchange membrane 0 Electric Double Layer x 1 1 C Diffusion layer, I = V = 0 0 < I < 2 V I=2 I
Tangential electric field, acting upon the space charge of the interfacial electric double layer, produces a tangential force whose action results in a slip-like flow known as electro-osmosis. Bulk Slip velocity C - (y) C + (y) Electric Double Layer - EDL Helmholtz (1879), Guoy-Chapman (1914), Stern (1924) Helmholtz-Smoluchowski 1879, 1903, 1921 HEURISTIC THEORY OF ELECTRO- OSMOTIC SLIP Assumptions: 1. Lateral hydrostatic pressure variation is negligible. 2. Electric field = superposition of the intrinsic field of EDL and a weak constant applied tangential field
ELECTROCONVECTION, STEADY STATE TWO TYPES OF ELECTROCONVECTION IN STRONG ELECTROLYTES “Bulk” electroconvection Classical quasiequilibrium electroosmosisNon-equilibrium electroosmosis
INNER SOLUTION: Boundary Conditions - Electroosmotic Slip, etc. OUTER SOLUTION:
OUTER SOLUTION: Locally Electroneutral “Bulk” Electroconvection EQUILIBRIUM ELECTROOSMOSIS Quasi-equilibrium Electric Double Layer Conduction stable: E. Zholkovskij, M. Vorotynsev, E. Staude J.Col.Int.Sc.96 Dukhin: 60s – 70s
Non-equilibrium Electric Double Layer I.R., L.Shtilman JCS Faraday Trans.79
Ionic concentration profiles ε=.001, 1 - V=0, 2 - V=7, 3 – V=15, 4 – V=25 Levich 1959, Grafov, Chernenko , Newman, Smyrl , Buck 1975, Listovnichy 1989, Nikonenko, Zabolotsky, Gnusin, 1989, Bruinsma, Alexander 1990, Chazalviel 1990, Mafe, Manzanares, Murphy, Reiss 1993, Urtenov 1999, Chu, Bazant 2005
Space charge density profiles ε=.001 O(ε 2/3 ) is the critical length scale, which dominates the EDL for the voltage range V=O(4/3|ln(ε)|), marking the transition from the quasi-equilibrium to non-equilibrium regimes of the double layer. For voltages larger than O(4/3|ln(ε)|), a whole range of scales appears for the extent of the space charge, anything from O(ε 2/3 ) to O(1). For such voltages, O(ε 2/3 ) is the length scale of the transition zone from the extended non-equilibrium space charge region to the quasi-electro-neutral bulk ε 2/3 ε
Basic Estimates
Toy Problem Stirred Bulk x 0 1 C I = V = 0 0 < I < 2 I Stirred Bulk 1 (1) (2)
EIS of ESC
Anomalous Rectification
Limiting EOII flow problem, electroosmotic instability S. Dukhin 1989: Electrokinetic Phenomena of the Second Kind, Adv. Coll. Interf. Sc.,91 P. Takhistov 1989: Duhin’s vortex measurements A.V. Listovnichy 1989: Extreme asymptotic ESC, Sov. Electrochem.,89 I. R. and B.Z. 1999: Limiting EOII slip: Marginal stability curves 1 - D = 0.1, 2 - D = 1, 3 - D = 10
Mechanism of Non-equilibrium Electro-osmotic Instability Test vortex
BASIC 1D PROBLEM IN TERMS OF PAINLEVÉ EQUATION
Universal Electro-Osmotic Slip Formula Dukhin’s Formula for | ζ |=O(1) | |>>O(1), Extended Charge Electroosmosis B.Z., I.R. JFM07
Electro-neutral bulk FLOW DRIVEN BY NON-EQUILIBRIUM ELECTROOSMOSYS Universal Electro-Osmotic Formulation
Marginal stability curves for full electro-convective problem, D=1, 1- ε=1E-2, 2- ε=1E-3, 3- ε=3E-5
Comparison of Neutral-Stability Curves in the Full and Limiting Formulations
Voltage - Current Curves in the Limiting Electro-Osmotic Formulation ε = 0.001, ε = , ε =
Hysteresis Mechanism Stabilizing 1D conduction in EN Bulk and in the QE EDL Destabilizing 1D conduction in the Extended Space Charge Region Convective mixing Destruction of 1D CP Lowering the hampering effect of the bulk electric force
Voltage - Current Curves in the Limiting Formulation with and without the Bulk Force Term ε =
Gilad Yossifon and Hsueh-Chia Chang, PRL08
Laterally averaged concentration profiles for three voltages corresponding to the limiting and two overlimiting currents y 1 2 3
Laterally averaged concentration profiles for various values of voltage and ε
Laterally averaged concentration profiles for various values of voltage (Full Problem)
I V
CURRENT & Z 0 VERSUS VOLTAGE
SPACE CHARGE
SPACE CHARGE DENSITY
IONIC CONCENTRATIONS
CURRENT & TOTAL CHARGE VERSUS VOLTAGE
TOTAL CHARGE & ESC VERSUS VOLTAGE
Electrodialysis stack Ion Exchange Membranes
Voltage-current curve of a C-membrane Current power spectra Overlimiting Conductance through Ion Exchange Membranes F. Maletzki, H.W. Rosler and E. Staude, JMS92
Voltage-current characteristic for amalgamated copper cathode (A) and membrane C51 (B) with electrolyte immobilized by agar-agar Corresponding current-noise power spectrum of the membrane =0.9V; working electrolyte 0.01M CuSO 4 23 C, theoretical limiting current: 126 mA Maletzki et al., 1992
Current-voltage curves of a C-membrane modified by a thin layer of cross- linked polyvinyl alcohol I [ mA/cm 2 ] U[V]
VISUALIZATION
Nonlinear Electro-convection ε = 0.01 Universal regular electro-osmotic formulation is needed
x y c
Concentration Level Lines and Streamlines (Electroosmotic Problem, ε = 0.001, V=35)
Overlimiting conductance
Numerical simulation of electroconvection in the limiting model for ε=10−6 showing hysteresis: black line – way up, blue line – way down. (a) Dimensionless current/voltage dependence; (b) flow streamlines’ pattern; (c) voltage dependence of the absolute value of the dimensionless linear flow velocity averaged over the diffusion layer; (d) current’s relaxation in the overlimiting regime.