Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.

Slides:



Advertisements
Similar presentations
Dynamics of Spin-1 Bose-Einstein Condensates
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
The University of Tokyo
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
Making cold molecules from cold atoms
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Cold Atomic and Molecular Collisions
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Дубна, 3 декабря 2014 V.S.Melezhik BLTP JINR, Dubna.
“Super-radiance” and the width of exotic baryons N. Auerbach V. Zelevinsky A. Volya This work is supported by NSF grant PHY and in part by a grant.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
INTRODUCTION TO PHYSICS OF ULTRACOLD COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 14 February 2008 Institute for.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
November 12, 2009 | Christian Stahl | 1 Fermion-Fermion and Boson-Boson Interaction at low Temperatures Seminar “physics of relativistic heavy Ions” TU.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Maykel L. González-Martínez ultracold temperatures October 3 th, Bordeaux.
Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Resonance Scattering in optical lattices and Molecules 崔晓玲 (IOP, CASTU) Collaborators: 王玉鹏 (IOP), Fei Zhou (UBC) 大连.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Adiabatic hyperspherical study of triatomic helium systems
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Maykel L. González-Martínez Laurent Bonnet and Pascal Larrégaray Statistical Product-State Distributions for Cold Exoergic Reactions in External Fields.
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Making cold molecules from cold atoms
DILUTE QUANTUM DROPLETS
Hot Cold Molecules: Collisions at Astrophysical Temperatures
Presentation transcript:

Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic Physics Division NIST ICAP Summer School 2006 University of Innsbruck And many others, especially Eite Tiesinga, Carl Williams, Pascal Naidon (NIST), Thorsten Köhler (Oxford), Bo Gao (Toledo), Roman Ciurylo (Torun)

Some resources Jones et al, Rev. Mod. Phys. 78, 483 (2006) van der Waals properties + PA review Julienne and Mies, J. Opt. Soc. Am. B 6, 2257 (1989) WKB/quantum connections and threshold laws Burnett et al, Nature 416, 225 (2002) “box”interpretation of A + simple review of cold collisions Kohler, Goral, Julienne, cond-mat/ (in press, Rev. Mod. Phys.) Production of cold molecules via magnetically tunable Feshbach resonances In progress, Chin, Grimm, Tiesinga, Julienne, Rev. Mod. Phys. Feshbach resonances in ultracold gases (look at preprint server by end of 2006)

“Size” of potential V(R) Gribakin and Flambaum, Phys. Rev. A 48, 546 (1993)

Noninteracting atoms Interacting atoms

Data: Bartenstein et al.,PRL 94, (2005) 834.1(1.5) G

Gao, Phys. Rev. A 62, (2000); Figure from E. Tiesinga Bound states from van der Waals theory

Inelastic collisions F=2, M=-2 F= For example: (2,-2)+(2,-2) -->(2,-2)+(2,-1) -->(2,-2)+(2,0) -->(2,-1)+(2,-1) Probability because For s-waves, let

Inelastic collisions Scattering amplitudes T  ’ expressed in terms of the elements of the unitary S-matrix S  ’ =   ’ - T  ’ Final channel: Scattering channels Initial channel:

If only a single channel, S   = e 2i  ➞ e -2ika as k ➞ 0 If inelastic channels  ’≠  exist, unitarity ensures Thus, Inelastic collisions continued Complex scattering length a-ib

How do we get the S-matrix, or bound states? Coupled channels expansion: Solve matrix Schrödinger equation Extract S from solution at large R >> R vdW Potential matrix V  ’ (R) conserved Electronic (Born-Oppenheimer) V(R) does not change Small spin-dependent potential changes

s-wave Threshold Collisions Summary Elastic collisions  ➞ constant, K ➞ v  = 4  a 2 +b 2 ) Inelastic collisions  ➞ 1/v, K ~ constant K = (4h/m)b Cross section  cm 2 Rate coefficient K = cm 3 /s Complex scattering length a - ib

How fast are (inelastic s-wave) cold collisions? Typical strong event (B ~ x 0 ): cm 3 /s, MOT or BEC In a MOT:  ~ 0.1 to 1 s In a BEC (use K/2):  ~ 10 to 100  s

How fast are inelastic cold collisions (Maxwell-Boltzmann)? where Q T = translational partition function  T = thermal de Broglie wavelength l=0 only Probability |S| 2 < 1 Dynamical factor Phase Space density Upper bound Dynamics

An Optical Lattice Laser 1 Laser 2

1 Atom per cell Control 2 Atoms per cell 2-body levels, dynamics 3 Atoms per cell 3-body levels, dynamics

V(r)Scale size of x0x0

D. Blume and Chris H. Greene, Phys. Rev. A 65, (2002) E. L. Bolda, E. Tiesinga, and P. S. Julienne, Phys. Rev. A 66, (2002) Na F=1,M=+1 Energy levels in a 1 MHz harmonic trap (Bolda et al., 2002) Points: numerical coupled channels Solid Line: pseudopotential E-dependent pseudopotential a(E n ) from scatttering calculation of  (E n ) Energy-dependent pseudopotential for trap level E n :

What is a scattering resonance? Basic properties of threshold resonance scattering and bound states Halo molecules Simple parameterization by 5 key parameters: a bg (background scattering length), C 6 (van der Waals coefficient), m (mass)  (width),  (magnetic moment difference) Basic molecular physics of alkali atom resonances Illustration of typical resonances: 6 Li, 85 Rb, 87 Rb, 40 K, Cs Resonance dynamics—making and dissociating molecules Resonances in traps Feshbach resonances and Feshbach molecules

Some examples of Feshbach resonances E. Tiesinga et al., Phys. Rev. A 47, 4114 (1993) Cesium theory background S. Inouye et al Nature 392, 141 (1998) Sodium BEC Magnetic field (Gauss)

An example for E ➞ 0 Cornish, Claussen, Roberts, Cornell, Wieman, Phys. Rev. Lett. 85, 1795 (2000) 85 Rb BEC (below 15 nK) G G G G G

Greiner, M., C. A. Regal, and D. S. Jin, 2003, Nature (London) 426, 537. Thermal (250 nK) Making 40 K 2 molecules BEC (79 nK) Tunable scattering resonances used for Herbig, J., T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C. Nagerl, and R. Grimm, 2003, Science 301, Cs atom cloud 133 Cs 2 molecule cloud Making 133 Cs 2 molecules

Long history of resonance scattering O. K. Rice, J. Chem. Phys. 1, 375 (1933) U. Fano, Nuovo Cimento 12, 154 (1935) J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (1952) H. Feshbach, Ann. Phys. (NY) 5, 357 (1958); 19, 287 (1962) U. Fano, Phys. Rev. 124, 1866 (1961) Separation of system into: An (approximate) bound state A scattering continuum with some coupling between them

Resonant Scattering Picture (U. Fano, Phys. Rev. 124, 1866 (1961)) V Bound state Continuum Open channel (Background) Closed channel (Resonance) shift width

Energy levels of the Na 2 dimer just below the a+a threshold a+a = 1,1 + 1,1 m=+2 l=0 states E aa

A Na example From Mies, Tiesinga, Julienne, Phys. Rev. A 61, (2000) Near 900 G (3 B values) Near 861 G 4sin 2  (E)  (E) =  bg (E) +  res (E) 915G920G 930G Background  bg (E)

M=+2 6 Li F=1/2,M=+1/2 + F=1/2,M-1/2 87 Rb F=1,M=+1 + F=1,M=+1 M=0 M=+2 Cs F=3,M=+3 + F=3,M=+3 M=+6 Na F=1,M=+1 + F=1,M=+1 M=+2

Threshold Resonant Scattering V E=0 Shifted As E ➞ 0

Basic resonance parameters a bg “background” scattering length B 0 singularity in a(B)  resonance width  magnetic moment difference For E --> 0 limit For finite E and bound states Effect of interatomic potential especially van der Waals -C 6 /R 6 a bg relative to E relative to E vdw

Example 87 Rb f=1, m=+1 Durr, Voltz, Marte, Rempe, Phys. Rev. Lett. 92, (2004) Atom cloud in trap Atoms Molecules Stern-Gerlach separation of

From Durr, Voltz, Marte, Rempe, Phys. Rev. Lett. 92, (2004) Schematic Magnetic moment

87 Rb + 87 Rb 30 THz 10 GHz

87 Rb Zeeman substructure  B /h = 1.4 MHz/G

a+a E(a+a) 87 Rb + 87 Rb Bound states with m=2

 

Cindy Regal, Marcus Greiner, Deborah Jin NIST Boulder Ultracold 40 K atoms, F=9/2,M=-9/2 and F=9/2,M=-7/2 BEC of molecules Nature 426, 537 (2003) “Fermionic condensate” of paired atoms Phys. Rev. Lett. 92, (2004)

BnBn E/h (MHz) 1 0 sin 2  bg (E,B) B (Gauss) 40 K a+b E -1

E/h (MHz) 1 0 sin 2  (E,B) E -1 (B) B (Gauss) 40 K a+b B0B0 BnBn E -1

 