WORKSHOP 7 TAPERED PLATE WS7-1 NAS120, Workshop 7, November 2003.

Slides:



Advertisements
Similar presentations
Drinking Straw Estimated Time for Completion: ~45min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
Advertisements

Section 7 Mesh Control.
O-Ring Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
Rubber Seal Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
Define a Composite Material
Controls Toolkit in ADAMS/View
1 Simple Pendulum Estimated time required: 20 min GUI familiarity level required: Lower MSC.ADAMS 2005 r2.
Spring Design using Parametric Modeling
WORKSHOP 8 NONLINEAR CONTACT
Advanced Results Processing Workshop 8. Training Manual Advanced Results Processing August 26, 2005 Inventory # WS8-2 Workshop 8 - Goals In this.
Estimated Time for Completion: 30 minutes Experience Level: Lower Compliant Stroke Amplifier MSC.Marc 2005r2 MSC.Patran 2005r2.
ANSYS Fundamentals This document contains no technical data subject to the EAR or the ITAR.
1 Pulley System GUI Familiarity Level Required: Lower Estimated Time Required: 40 minutes MSC.ADAMS 2005 r2.
WS Mar120 - Patran Day 1 Overview - Meshing FINITE ELEMENT MODEL OF A 3-D CLEVIS AND PROPERTY ASSIGNMENT.
ADAMS Assignment 4 ME451:Kinematics and Dynamics of Machine Systems.
Using MD Nastran/Patran and MSC.Adams together
INTERFERENCE FITS MAR Interference Fits.
CONTACT ANALYSIS USING 3D BOLTS
Gear Train MSC.ADAMS 2005 r2 GUI Familiarity Level Required: Low
WORKSHOP 11 SPACECRAFT FAIRING
1 F F Double-Cantilevered Bar Estimated time for completion: ~20 min Experience Level: Lower MSC.Patran 2005 r2.
Staple Pin Simulation Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
Crush Pipe Problem Estimated Time for Completion: ~35min Experience Level: Lower MSC.Patran 2005 r2 MSC.Marc 2005 r2.
1 Projectile Estimated time required: 20 min GUI familiarity level required: Higher MSC.ADAMS 2005 r2.
1 MSC ADAMS 2005 r2 Crank Slider Mechanism on Incline Plane GUI Familiarity Level Required: Lower Estimated Time Required: 1 hour.
1 Short-Long Arm Suspension GUI Familiarity Level Required: Lower Estimated Time Required: 40 minutes MSC.ADAMS 2005 r2.
Modal Analysis of a Simple Cantilever
1 Extrusion GUI Familiarity Level Required: Lower Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Hertz Contact Estimated Time for Completion: 30 minutes Experience Level: Lower MSC.Marc 2005r2 MSC.Patran 2005r2.
WORKSHOP 1 STEADY STATE HEAT TRANSFER WORKSHOP 1 STEADY STATE HEAT TRANSFER.
1 Oscillating Slider Estimated time required: 25 min GUI familiarity level required: Higher MSC.ADAMS 2005 r2.
1 Bridge Truss Structure Estimated time required: ~30 min Experience level: Lower MSC.Patran 2005 r2.
BREAK FORMING MAR Break Forming Exercise. WS MAR 120, Break Forming, June 2004MAR Break Forming Exercise Model Description: A flat sheet.
LANDING GEAR STRUT ANALYSIS
WS8C-1 WORKSHOP 8C TENSION COUPON NAS120, Workshop 8C, November 2003.
Mar120, Workshop 7, December 2001 WORKSHOP 7 METAL FORMING A PAPER CLIP WORKSHOP 7 METAL FORMING A PAPER CLIP.
WORKSHOP 4 TRANSIENT HEAT TRANSFER ANALYSIS. WS4-2.
WS Mar120 - Patran Day 1 Overview - Results POST PROCESSING OF STRESS RESULTS.
WS-1 WORKSHOP Define Equivalent Section Plate Properties NAS121, Workshop, May 6, 2002.
BALL JOINT ANALYSIS F=600 lbf MAR 120 – Ball Joint Analysis.
1 Stadium Display Truss – Troubleshooting Estimated time required: 35 min Experience level: Higher MD Patran 2005 r2.
WS6-1 WORKSHOP 6 BRIDGE TRUSS NAS120, Workshop 6, November 2003.
GEOMETRY MODEL OF A 3-D CLEVIS
ANALYSIS OF A CANTILEVER BEAM
1 Assemble Exploded Model GUI Familiarity Level Required: Lower Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Investigation of the Thermal Stresses in a Steel Plate.
1 Billiards GUI Familiarity Level Required: Higher Estimated Time Required: 30 minutes MSC.ADAMS 2005 r2.
Workshop 5-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 5 Stiffened Plate Subjected to Pressure Load.
WS8B-1 WORKSHOP 8B TENSION COUPON NAS120, Workshop 8B, November 2003.
WS4-1 WORKSHOP 4 Stadium Truss NAS120, Workshop 4, November 2003.
WS9A-1 WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER NAS120, Workshop 9A, November 2003.
Workshop 2 Steel Bracket Modified by (2008): Dr. Vijay K. Goyal Associate Professor, Department of Mechanical Engineering University of Puerto Rico at.
Bending of a Pipe by a Punch Workshop 8. Workshop Supplement March 15, 2001 Inventory # WS8-2 Utility Menu > File > Read Input from … > pipe.inp.
Workshop 3 Various Workshops for SOLSH190 Solid-Shell Element
WORKSHOP 15 PARASOLID MODELING NAS120, Workshop 15, November 2003 WS15-1.
Simulating a Deep Drawing Process Workshop 2. Workshop Supplement March 15, 2001 Inventory # WS2-2 Utility Menu > File > Read input from …> deep.inp.
Workshop 9-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 9 Buckling Analysis of Plate.
WS8A-1 WORKSHOP 8A TENSION COUPON NAS120, Workshop 8A, November 2003.
Mar120 - Test Specimen Necking NECKING OF A TEST SPECIMEN Symmetry Plane.
NAS133, Workshop 2, August 2011 Copyright© 2011 MSC.Software Corporation WS2 - 1 WORKSHOP 2 SOLID-TO-SOLID CONTACT.
MAR120, Workshop 1, December 2001 WORKSHOP 01 LINEAR AND NONLINEAR ANALYSIS OF A CANTILEVER BEAM.
WS16-1 MAR120, Workshop 16, December 2001 WORKSHOP 16 SPECTRUM RESPONSE ANALYSIS OF A TRANSMISSION TOWER
Workshop 7B-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 7B Structure With Spring Support.
ANSYS Basics Workshop 3A Introductory Workshop. Workshop Supplement October 30, 2001 Inventory # W3-2 3A. Introductory Workshop ANSYS Basics In.
Workshop 4-1 NAS101 Workshops Copyright  2001 MSC.Software Corporation WORKSHOP 4 Structure Subjected to Enforced Displacement at an incline.
FREQUENCY RESPONSE ANALYSIS OF TRANSMISSION TOWER
WORKSHOP 11 PRESS FIT CAT509, Workshop 11, March 2002 WS11-1.
ANALYSIS OF A RUBBER SEAL
NECKING OF A TEST SPECIMEN
ENFORCED MOTION IN TRANSIENT ANALYSIS
Presentation transcript:

WORKSHOP 7 TAPERED PLATE WS7-1 NAS120, Workshop 7, November 2003

WS7-2 NAS120, Workshop 7, November 2003

WS7-3 NAS120, Workshop 7, November 2003 Problem Description Model a tapered annular plate with a variable pressure loading. Due to symmetry, only a 45° slice of the plate will be modeled. The plate is constructed from two different materials as shown below: Inner Region Steel Outer Region Aluminum

WS7-4 NAS120, Workshop 7, November 2003 Problem Description (cont.) The thickness variation in the plate is shown below:

WS7-5 NAS120, Workshop 7, November 2003 Analysis Code:MSC.Nastran Element Type:Quad4 Element Global Edge Length:0.5 Problem Description (Cont.) Table 8.1 Mesh Definition Table 8.2 Material Properties: Material:SteelAluminum Modulus of Elasticity:30E+0610E+06 Poisson Ratio: Density:7.324E E-04

WS7-6 NAS120, Workshop 7, November 2003 Workshop Objectives: 1.Learn to use fields to define element thickness 2.Learn to use fields to create variable pressure loading

WS7-7 NAS120, Workshop 7, November 2003 Suggested Exercise Steps: 1.Create geometry representing a 45° slice of the annular plate. 2.Create the finite element mesh using the information listed in Table Create a cylindrical coordinate system. 4.Using the cylindrical coordinate system, define a spatially varying field which represents the plate thickness. Verify the field by creating an XY-plot. 5.Define material properties using the material constants shown in Table 12.2.

WS7-8 NAS120, Workshop 7, November 2003 Suggested Exercise Steps: 6.Define element properties by assigning the material type and element thickness to the correct region of the model. 7.Verify that the spatial variation of the element thickness has been assigned correctly to the model by creating a scalar plot. 8.Define a spatially varying field that represents the pressure load. 9.Apply the pressure load. 10.Verify that the pressure has been assigned correctly by modifying plot markers.

WS7-9 NAS120, Workshop 7, November 2003 Create a New Database Create a new database called annular_plate.db a.File / New. b.Enter tapered_plate as the file name. c.Click OK. d.Choose Default Tolerance. e.Select MSC.Nastran as the Analysis Code. f.Select Structural as the Analysis Type. g.Click OK.

WS7-10 NAS120, Workshop 7, November 2003 Create a curve a.Geometry: Create / Curve / 2D ArcAngles. b.Enter 1.0 for the Radius. c.Enter 0.0 for Start Angle and 45 for End Angle. d.Enter [0 0 0] for the Center Point List. e.Click Apply. f.Click on the Show Labels Icon. Step 1. Geometry: Create/Curve/2D ArcAngles a b c d e f

WS7-11 NAS120, Workshop 7, November 2003 Create two more curves. a.Enter 3.0 for the Radius. b.Click Apply. c.Enter 4.0 for the Radius. d.Click Apply. Step 1. (Cont.) Geometry: Create/Curve/2D ArcAngles a c d b

WS7-12 NAS120, Workshop 7, November 2003 Create two surfaces. a.Create / Surface / Curve. b.Select 2 Curve for the Option. c. Screen pick Curve 1, then Curve 2. A surface is automatically generated. d.Screen pick Curve 2, then Curve 3. A second surface is generated. Step 1. (Cont.) Create/Surface/Curve a b c d

WS7-13 NAS120, Workshop 7, November 2003 Mesh the two surfaces. a.Finite Element: Create / Mesh / Surface. b.Select IsoMesh as the Mesher. c.Select Quad4 Element Topology. d.Select both surfaces for the Surface List. e.Enter 0.5 as the Global Edge Length. f.Click Apply. g.Click on Hide Labels icon. Step 2. Finite Elements: Create/Mesh/Surface a b c d e f g

WS7-14 NAS120, Workshop 7, November 2003 Step 2. (Cont.) Finite Element: Equivalence /All/Tolerance Cube Merge all coincident nodes. a.Equivalence / All / Tolerance Cube. b.Click Apply. a b

WS7-15 NAS120, Workshop 7, November 2003 Create a cylindrical coordinate system. a.Geometry: Create / Coord / 3 Point b.Select Cylindrical as the type of coordinate system. c.Enter [0 0 0] for origin, [0 0 1] for Point on Axis 3, and [1 0 0] for Point on Plane 1-3. d.Click Apply. Step 3. Create/Coord/3Point a b c d

WS7-16 NAS120, Workshop 7, November 2003 Step 4. Fields: Create /Spatial/ Tabular Input Create a field which defines the variation in plate thickness. a.Fields: Create / Spatial / Tabular Input. b.Type in thickness_spatial for the Field Name. c.Select Coord 1 for Coordinate System. d.Select R as the Active Independent Variable. e.Click on the Input Data button to bring up the 1D Scalar Table Data window. f.Enter the values into the table using the Enter key on the keyboard. Use the values shown on this page. g.Click OK to return to the main field menu. h.Click Apply. a b c d e f g h

WS7-17 NAS120, Workshop 7, November 2003 Step 4. (Cont.) Field: Show Verify the field using an XY plot. a.Show. b.Select thickness_spatial in the Select Field to Show window. c.Click on the Specify Range button. d.Check the Use Existing Points option. e.Click OK to return to the main field menu. f.Click Apply. a b c d e f

WS7-18 NAS120, Workshop 7, November 2003 Step 5. Materials: Create / Isotropic / Manual Input Create a material property set for steel. a.Materials: Create / Isotropic / Manual Input. b.Enter steel as the Material Name. c.Click on the Input Properties button. d.Enter 30e6 for the Elastic Modulus. e.Enter 0.3 for the Poisson Ratio. f.Enter for the Density. g.Click OK. h.Click Apply. a b c d e g h f

WS7-19 NAS120, Workshop 7, November 2003 Step 5. (Cont.) Materials: Create / Isotropic / Manual Input Create a material property set for aluminum. a.Materials: Create / Isotropic / Manual Input. b.Enter alum as the Material Name. c.Click on the Input Properties button. d.Enter 10e6 for the Elastic Modulus. e.Enter 0.33 for the Poisson Ration. f.Enter for the Density. g.Click OK. h.Click Apply. a b c d e g h f

WS7-20 NAS120, Workshop 7, November 2003 Step 6. Element Properties: Create / 2D / Shell Define Element Properties for the inner portion of the plate. a.Properties: Create / 2D / Shell. b.Enter prop_1 as the Property Set Name. c.Click on the Input Properties button. d.Click on the Select Material Icon. e.Click on the steel in the Select Material window. f.Change the thickness option from Real Scalar to Element Nodal. g.Click on the Select Field Icon. h.For the Thickness, select thickness_spatial from the Field Definitions section. i.Click OK. j.Select the inner surface for the Application Region. k.Click Add. l.Click Apply. a b c d g i f j e h k l

WS7-21 NAS120, Workshop 7, November 2003 Step 6. (Cont.) Element Properties: Create / 2D / Shell a b c d g i f j e h k l Define Element Properties for the outer portion of the plate. a.Properties: Create / 2D / Shell. b.Enter prop_2 as the Property Set Name. c.Click on the Input Properties button. d.Click on the Select Material Icon. e.Click on the alum in the Select Material window. f.Change the thickness option from Real Scalar to Element Nodal. g.Click on the Select Field Icon. h.For the Thickness, select thickness_spatial from the Field Definitions section. i.Click OK. j.Select the outer surface for the Application Region. k.Click Add. l.Click Apply.

WS7-22 NAS120, Workshop 7, November 2003 Step 7. Element Properties: Show Verify element properties using a scalar plot of the thickness. a.Properties: Show. b.Select Thickness from the Existing Properties window. c.Select Scalar Plot as the Display Method. d.Select Default Group. e.Click Apply. a b c d e

WS7-23 NAS120, Workshop 7, November 2003 Step 8. Fields: Create /Spatial/ Tabular Input Create a field which defines the variation in pressure. a.Fields: Create / Spatial / PCL Function. b.Type in pressure_variation for the Field Name. c.Select Coord 1 for Coordinate System. d.Enter the function: 100*’R. e.Click Apply. a b c d e

WS7-24 NAS120, Workshop 7, November 2003 Step 9. Loads/BCs: Create /Pressure/ Element Uniform Create a pressure load. a.Loads/BCs: Create / Pressure / Element Variable. b.Type in press for the New Set Name. c.Set the Target Element Type to 2D. d.Click Input Data. e.Click on the Bottom Surf Pressure list box and select the field pressure_variation. f.Click OK. a b d e f c

WS7-25 NAS120, Workshop 7, November 2003 Step 9. Loads/BCs: Create /Pressure/ Element Uniform a Select an application region. a.Click on the Iso 3 View Icon. b.Click Select Application Region. c.For the Geometry Filter select Geometry. d.Select the Surface or Face filter. e.Click in the application region list box and select both surfaces. f.Click Add. g.Click OK. h.Click Apply. b e c f g h d

WS7-26 NAS120, Workshop 7, November 2003 Step 10. Modify Plot Markers Modify the pressure plot markers. a.Display: Load/BC/Elem.Props. b.Select Show on FEM only. c.Click on Vectors/Filters. d.Change the length to Scaled- Screen Relative. e.Click Apply. f.Click Cancel. g.Click on Label Style. h.Set the Label Format to Integer. i.Click OK. j.Click Apply. a c d e f g h i j b

WS7-27 NAS120, Workshop 7, November 2003 Step 10. Modify Plot Markers Re-plot the pressure plot markers. a.Loads/BCs: Plot Markers. b.Select the pressure load set. c.Click Apply. a b c

WS7-28 NAS120, Workshop 7, November 2003