Psy B07 Chapter 7Slide 1 HYPOTHESIS TESTING APPLIED TO MEANS.

Slides:



Advertisements
Similar presentations
Chapter 10: The t Test For Two Independent Samples
Advertisements

T-tests continued.
1 COMM 301: Empirical Research in Communication Lecture 15 – Hypothesis Testing Kwan M Lee.
Comparing One Sample to its Population
BPS - 5th Ed. Chapter 241 One-Way Analysis of Variance: Comparing Several Means.
Sampling Distributions
5/15/2015Slide 1 SOLVING THE PROBLEM The one sample t-test compares two values for the population mean of a single variable. The two-sample test of a population.
1 Analysis of Variance This technique is designed to test the null hypothesis that three or more group means are equal.
PSY 307 – Statistics for the Behavioral Sciences
Independent Samples and Paired Samples t-tests PSY440 June 24, 2008.
Intro to Statistics for the Behavioral Sciences PSYC 1900 Lecture 10: Hypothesis Tests for Two Means: Related & Independent Samples.
BCOR 1020 Business Statistics
Intro to Statistics for the Behavioral Sciences PSYC 1900 Lecture 9: Hypothesis Tests for Means: One Sample.
Overview of Lecture Parametric Analysis is used for
Don’t spam class lists!!!. Farshad has prepared a suggested format for you final project. It will be on the web
T-Tests Lecture: Nov. 6, 2002.
S519: Evaluation of Information Systems
 What is t test  Types of t test  TTEST function  T-test ToolPak 2.
Lecture 7 PY 427 Statistics 1 Fall 2006 Kin Ching Kong, Ph.D
PSY 307 – Statistics for the Behavioral Sciences
Hypothesis Testing Using The One-Sample t-Test
Getting Started with Hypothesis Testing The Single Sample.
Chapter 9: Introduction to the t statistic
PSY 307 – Statistics for the Behavioral Sciences
Hypothesis testing.
Psy B07 Chapter 1Slide 1 ANALYSIS OF VARIANCE. Psy B07 Chapter 1Slide 2 t-test refresher  In chapter 7 we talked about analyses that could be conducted.
Hypothesis Testing:.
Hypothesis testing – mean differences between populations
Psy B07 Chapter 8Slide 1 POWER. Psy B07 Chapter 8Slide 2 Chapter 4 flashback  Type I error is the probability of rejecting the null hypothesis when it.
T-test Mechanics. Z-score If we know the population mean and standard deviation, for any value of X we can compute a z-score Z-score tells us how far.
CORRELATION & REGRESSION
Sampling Distribution of the Mean Central Limit Theorem Given population with and the sampling distribution will have: A mean A variance Standard Error.
The Hypothesis of Difference Chapter 10. Sampling Distribution of Differences Use a Sampling Distribution of Differences when we want to examine a hypothesis.
RMTD 404 Lecture 8. 2 Power Recall what you learned about statistical errors in Chapter 4: Type I Error: Finding a difference when there is no true difference.
Dan Piett STAT West Virginia University
1 CSI5388: Functional Elements of Statistics for Machine Learning Part I.
Estimates and Sample Sizes Lecture – 7.4
Hypothesis Testing CSCE 587.
One-sample In the previous cases we had one sample and were comparing its mean to a hypothesized population mean However in many situations we will use.
Chapter 6 Lecture 3 Sections: 6.4 – 6.5.
Copyright © Cengage Learning. All rights reserved. 10 Inferences Involving Two Populations.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal.
From Theory to Practice: Inference about a Population Mean, Two Sample T Tests, Inference about a Population Proportion Chapters etc.
Testing Hypotheses about Differences among Several Means.
Sociology 5811: Lecture 11: T-Tests for Difference in Means Copyright © 2005 by Evan Schofer Do not copy or distribute without permission.
Introduction to the Practice of Statistics Fifth Edition Chapter 6: Introduction to Inference Copyright © 2005 by W. H. Freeman and Company David S. Moore.
© Copyright McGraw-Hill 2000
Two-Sample Hypothesis Testing. Suppose you want to know if two populations have the same mean or, equivalently, if the difference between the population.
Chapter 12 For Explaining Psychological Statistics, 4th ed. by B. Cohen 1 Chapter 12: One-Way Independent ANOVA What type of therapy is best for alleviating.
KNR 445 Statistics t-tests Slide 1 Introduction to Hypothesis Testing The z-test.
Data Analysis.
Inferential Statistics Inferential statistics allow us to infer the characteristic(s) of a population from sample data Slightly different terms and symbols.
Review of Statistics.  Estimation of the Population Mean  Hypothesis Testing  Confidence Intervals  Comparing Means from Different Populations  Scatterplots.
Chapter 6 Lecture 3 Sections: 6.4 – 6.5. Sampling Distributions and Estimators What we want to do is find out the sampling distribution of a statistic.
ISMT253a Tutorial 1 By Kris PAN Skewness:  a measure of the asymmetry of the probability distribution of a real-valued random variable 
Other Types of t-tests Recapitulation Recapitulation 1. Still dealing with random samples. 2. However, they are partitioned into two subsamples. 3. Interest.
T-tests Chi-square Seminar 7. The previous week… We examined the z-test and one-sample t-test. Psychologists seldom use them, but they are useful to understand.
Chapter 9: Introduction to the t statistic. The t Statistic The t statistic allows researchers to use sample data to test hypotheses about an unknown.
Copyright © 2009 Pearson Education, Inc t LEARNING GOAL Understand when it is appropriate to use the Student t distribution rather than the normal.
Chapter 10: The t Test For Two Independent Samples.
Independent Samples: Comparing Means Lecture 39 Section 11.4 Fri, Apr 1, 2005.
Dependent-Samples t-Test
Testing the Difference between Means and Variances
Elementary Statistics
Reasoning in Psychology Using Statistics
Reasoning in Psychology Using Statistics
Warmup To check the accuracy of a scale, a weight is weighed repeatedly. The scale readings are normally distributed with a standard deviation of
Reasoning in Psychology Using Statistics
Comparing Two Populations
Hypothesis Testing: The Difference Between Two Population Means
Presentation transcript:

Psy B07 Chapter 7Slide 1 HYPOTHESIS TESTING APPLIED TO MEANS

Psy B07 Chapter 7Slide 2  Central Limit Theorem  Single Means – σ is known  Single Means – σ is unknown  Pairs of Means – Matched Samples  Pairs of Means – Independent Samples  Variance Sum Law  Pooling Variances & Unequal Ns  Heterogeneity of Variance  The Cookbook Outline

Psy B07 Chapter 7Slide 3 Typical Question Q1: Is some sample mean different from what would be expected given some population distribution?  On the face of it, this question should remind you of your previous fun with z-scores.  In the case of z-scores, we asked whether some observation was significantly different from some sample mean.  In the case of this question, we are asking whether some sample mean is significantly different from some population mean

Psy B07 Chapter 7Slide 4 Typical Question  Despite this apparent similarity, the questions are different because the sampling distribution of the mean (the t distribution) is different from the sampling distribution of observations the z distribution).  In order to understand the distinction between the z and t-tests, we need to understand the Central Limit Theorem...

Psy B07 Chapter 7Slide 5 Central Limit Theorem  CLT: Given a population with mean μ and variance σ, the sampling distribution of the mean (the distribution of sample means) will have a mean equal to μ (i.e., ), a variance ( ) equal to, and a standard deviation ( ) equal to. The distribution will approach the normal distribution as N, the sample size, increases.

Psy B07 Chapter 7Slide 6 Central Limit Theorem 1.Population of Scores 1, 2, 4, 5, 8 N = 5 μ x = 4.00 σ X = 2.45

Psy B07 Chapter 7Slide 7 Central Limit Theorem 2.All possible samples of size 2 (n=2) 1,12,14,15,18,1 1,22,24,25,28,2 1,42,44,45,48,4 1,52,54,55,58,5 1,82,84,85,88,8

Psy B07 Chapter 7Slide 8 Central Limit Theorem 3. Sampling distribution of sample means

Psy B07 Chapter 7Slide 9 Central Limit Theorem 4.

Psy B07 Chapter 7Slide 10 Central Limit Theorem 5.

Psy B07 Chapter 7Slide 11 Single Means – σ is known  Although it is seldom the case, sometimes we know the variance (as well as the mean) of the population distribution of interest.  In such cases, we can do a revised version of the z-test that takes into account the central limit theorem

Psy B07 Chapter 7Slide 12 Single Means – σ is known  Specifically......becomes...

Psy B07 Chapter 7Slide 13 Single Means – σ is known  With this formula, we can answer questions like the following: Say I sampled 25 students at UofT and measured their IQ, finding a mean of 110. Is this mean significantly different from the population which has a mean IQ of 100 and a standard deviation of 15?

Psy B07 Chapter 7Slide 14 Single Means – σ is unknown  Unfortunately, it is very rare that we know the population standard deviation.  Instead we must use the sample standard deviation, s, to estimate .  However, there is a hitch to this. While s 2 is an unbiased estimator of  2 (i.e., the mean of the sampling distribution of s 2 equals  2 ), the sampling distribution of s 2 is positively skewed

Psy B07 Chapter 7Slide 15 Single Means – σ is unknown  This means that any individual s 2 chosen from the sampling distribution of s 2 will tend to underestimate  2.  Thus, if we used the formula that we used when  was known, we would tend to get z values that were larger than they should be, leading to too many significant results

Psy B07 Chapter 7Slide 16 Single Means – σ is unknown  The solution? Use the same formula (modified to use s instead of ), find its distribution under H 0, then use that distribution for doing hypothesis testing. The result:

Psy B07 Chapter 7Slide 17 Single Means – σ is unknown  When a t-value is calculated in this manner, it is evaluated using the t-table (p. 747 of the text) and the row for n-1 degrees of freedom.  So, with all this in hand, we can now answer questions of the following type...

Psy B07 Chapter 7Slide 18 Single Means – σ is unknown Example: Let’s say that the average human who has reached maturity is 68” tall. I’m curious whether the average height of our class differs from this population mean. So, I measure the height of the 100 people who come to class one day, and get a mean 70” and a standard deviation of 5”. What can I conclude?

Psy B07 Chapter 7Slide 19 Single Means – σ is unknown  If we look at the t-table, we find the critical t-value for alpha=.05 and 99 (n-1) degrees of freedom is  Since the t obt > t crit, we reject H 0

Psy B07 Chapter 7Slide 20 Typical Questions  Quite often, instead of comparing a single score or a single mean to a population, we want to compare two means against one another  In other words – is the mean of one group significantly different from another?  Matched Sample  Independent Sample

Psy B07 Chapter 7Slide 21 Pairs of Means – Matched Samples  In many studies, we test the same subject on multiple sessions or in different test conditions.  We then wish to compare the means across these sessions or test conditions.  This type of situation is referred to as a pair wise or matched samples (or within subjects) design, and it must be used anytime different data points cannot be assumed to be independent  sexist profs example

Psy B07 Chapter 7Slide 22 Pairs of Means – Matched Samples  As you are about to see, the t-test used in this situation is basically identical to the t-test discussed in the previous section, once the data has been transformed to provide difference scores

Psy B07 Chapter 7Slide 23 Pairs of Means – Matched Samples  Assume we have some measure of rudeness and we then measure 10 profs rudeness index; once when the offending TA is male, and once when they are female.

Psy B07 Chapter 7Slide 24 Pairs of Means – Matched Samples  Question becomes, is the average difference score significantly different from 0?  So, when we do the math:

Psy B07 Chapter 7Slide 25 Pairs of Means – Matched Samples  The critical t with alpha equal.05 (two- tailed) and 9 (n-1) degrees of freedom is  Since t obt is not greater than t crit, we can not reject H 0.  Thus, we have no evidence that the profs rudeness is difference across TAs of different genders

Psy B07 Chapter 7Slide 26 Pairs of Means – Independent Samples  Another common situation is one where we have two of more groups composed of independent observations.  That is, each subject is in only one group and there is no reason to believe that knowing about one subjects performance in one of the groups would tell you anything about another subjects performance in one of the other groups

Psy B07 Chapter 7Slide 27 Pairs of Means – Independent Samples  In this situation we are said to have independent samples or, as it is sometimes called, a between subjects design  Example: Let’s take the famous “Misinformation Effect” memory experiment where subjects see a video of a car accident and are asked to estimate the speed of the car involved in the accident. The adjective used to describe the collision (smashed vs. ran into vs. contacted) is varied across groups (n=20). Did the manipulation affect speed estimates? That is, are the mean speed estimates of the various groups different?

Psy B07 Chapter 7Slide 28 Pairs of Means – Independent Samples  In the accident video, about how fast (in km/h) do you think the gray car was going when it ________ the side of the red car?

Psy B07 Chapter 7Slide 29 Pairs of Means – Independent Samples  There are, in fact, three different t-tests we can perform in this situation, comparing groups 1 &2, 1&3, or 2&3.  For demonstration purposes, let’s only worry about groups 1 & 2 for now.  So, we could ask, do subjects in Group 1 give different estimates of the gray car’s speed than subjects in Group 2?

Psy B07 Chapter 7Slide 30 Variance Sum Law  When testing a difference between two independent means, we must once again think about the sampling distribution associated with H 0.  If we assume the means come from separate populations, we could simultaneously draw samples from each population and calculate the mean of each sample

Psy B07 Chapter 7Slide 31 Variance Sum Law  If we repeat this process a number of times, we could generate sampling distributions of the mean of each population, and a sampling distribution of the difference of the two means.  If we actually did this, we would find that the sampling distribution of the difference would have a variance equal to the sum of the two population variances

Psy B07 Chapter 7Slide 32 Variance Sum Law  In fact, the Variance Sum Law states that: The variance of a sum or difference of two independent variables is equal to the sum of their variances

Psy B07 Chapter 7Slide 33 Pairs of Means – Independent Samples  Now recall that when we performed a t-test in the situation where the population standard deviation was unknown, we used the formula:  Given all of the above, we can now alter this formula in a way that will allow us to use it in the independent means example

Psy B07 Chapter 7Slide 34 Pairs of Means – Independent Samples  Specifically, instead of comparing a single sample mean with some mean, we want to see if the difference between two sample means equals zero.  Thus the numerator (top part) will change to: or simply

Psy B07 Chapter 7Slide 35 Pairs of Means – Independent Samples  And, because the standard error associated with the difference between two means is the sum of each mean’s standard error (by the variance sum law), the denominator of the formula changes to

Psy B07 Chapter 7Slide 36 Pairs of Means – Independent Samples  Thus, the basic formula for calculating a t-test for independent samples is:

Psy B07 Chapter 7Slide 37 Pairs of Means – Independent Samples  Finishing the example: Comparing groups 1 and 2, we end up with:  df = (n 1 +n 2 -2) = 38, t CRIT =  Since t OBT > t CRIT we reject H 0

Psy B07 Chapter 7Slide 38 Pooling Variances & Unequal Ns  The previous formula is fine when sample sizes are equal.  However, when sample sizes are unequal, it treats both of the S 2 as equal in terms of their ability to estimate the population variance

Psy B07 Chapter 7Slide 39 Pooling Variances & Unequal Ns  Instead, it would be better to combine the s2 in a way that weighted them according to their respective sample sizes. This is done using the following pooled variance estimate:

Psy B07 Chapter 7Slide 40 Pooling Variances & Unequal Ns  Given this, the new formula for calculating an independent groups t-test is:

Psy B07 Chapter 7Slide 41 Pooling Variances & Unequal Ns  Using the pooled variances version of the t formula for independent samples is no different from using the separate variances version when sample sizes are equal. It can have a big effect, however, when sample sizes are unequal.

Psy B07 Chapter 7Slide 42 Heterogeneity of Variance  The text book has a large section on heterogeneity of variance (pp ) including lots of nasty looking formulae. All I want you to know is the following:  When doing a t-test across two groups, you are assuming that the variances of the two groups are approximately equal.  If the variances look fairly different, there are tests that can be used to see if the difference is so great as to be a problem

Psy B07 Chapter 7Slide 43 Heterogeneity of Variance  If the variances are different across the groups, there are ways of correcting the t-test to take the heterogeneity in account.  In fact, t-tests are often quite robust to this problem, so you don’t have to worry about it too much.

Psy B07 Chapter 7Slide 44 The Cookbook One Observation vs. Population :

Psy B07 Chapter 7Slide 45 The Cookbook One Mean vs. One Population Mean: Population variance known:

Psy B07 Chapter 7Slide 46 The Cookbook One Mean vs. One Population Mean: Population variance unknown: df = n-1

Psy B07 Chapter 7Slide 47 The Cookbook Two Means: Matched samples: first create a difference score, then... df = n D -1

Psy B07 Chapter 7Slide 48 The Cookbook Two Means: Independent samples: df = n 1 +n 2 -2

Psy B07 Chapter 7Slide 49 The Cookbook Two Means: Independent samples...continued: where: Easy as baking a cake, right? Now for some examples of using these recipes to cook up some tasty conclusions...

Psy B07 Chapter 7Slide 50 Examples 1) The population spends an average of 8 hours per day working, with a standard deviation of 1 hour. A certain researcher believes that profs work less hours than average and wants to test whether the average hours per day that profs work is different from the population. This researcher samples 10 professors and asks them how many hours they work per day, leading to the following data set:  perform the appropriate statistical test and state your conclusions.

Psy B07 Chapter 7Slide 51 Examples 2) Now answer the question again except assume the population variance is unknown. 3) Does the use of examples improve memory for the concepts being taught? Joe Researcher tested this possibility by teaching 10 subjects 20 concepts each. For each subject, examples were provided to help explain 10 of the new concepts, no examples were provided for the other 10. Joe then tested his subjects memory for the concepts and recorded how many concepts, out of 10, that the subject could remember. Here is the data (next slide):

Psy B07 Chapter 7Slide 52 Examples

Psy B07 Chapter 7Slide 53 Examples 4) Circadian rhythms suggest that young adults are at their physical peek in the early afternoon, and are at their physical low point in the early morning. Are cognitive factors affected by these rhythms? To test this question I bring subjects in to run a recognition memory experiment. Half of the subjects are run at 8 am, the other half at 2pm. I then record their recognition memory accuracy. Here are the results: 8 am 2 pm