Undulator Based ILC Positron Source Studies Wei Gai Argonne National Laboratory CCAST ILC Accelerator Workshop Beijing, Nov 5 – 7, 2007.

Slides:



Advertisements
Similar presentations
30/10/09 Positron Workshop 1 Future Work Plan, Action Items, Future Meetings Jim Clarke ASTeC & Cockcroft Institute Daresbury Laboratory.
Advertisements

ILC positron source simulation update Wanming Liu, Wei Gai ANL 03/20/2011.
Ian Bailey University of Liverpool / Cockcroft Institute Target Design and Photon Collimator Overview EUROTeV: WP4 (polarised positron source) PTCD task.
ILC Positron Source Update Wei Gai Posipol ILC RDR baseline schematic (2007 IHEP meeting) Collimator OMD 150GeV e- ~147GeV e- Target TAP (~125MeV)
ILC Electron and Positron Sources Wei Gai for the ILC e- and e+ collaboration PAC review, 2012 KEK, Japan.
Overview of 300 Hz Conventional e + Source for ILC Truly Conventional Collaboration ANL, IHEP, Hiroshima U, U of Tokyo, KEK, DESY, U of Hamburg NIM A672.
Undulator R & D Jim Clarke STFC Daresbury Laboratory, UK BAW-2 SLAC Jan 2011.
Ian Bailey University of Liverpool / Cockcroft Institute UK EUROTeV Photon Conversion Target Project EUROTeV: WP4 (polarised positron source) PTCD task.
Ian Bailey Cockcroft Institute/ Lancaster University October 30 th, 2009 Baseline Positron Source Target Experiment Update.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
Status of the HELICAL contribution to the polarised positron source for the International Linear Collider The positron source for the International Linear.
Status of Undulator-based Positron Source Baseline Design Leo Jenner, but based largely on a talk given by Jim Clarke to Positron DESY-Zeuthen,
Simulations of the Rotating Positron Target in the Presence of OMD Field* S. Antipov+, W. Liu, W. Gai Argonne National Lab +also Illinois Institute of.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
ILC undulator based RDR e+ source: Yields and Polarizations for QWT capturing and different drive beam energy: Wei Gai, Wanming Liu Argonne National Lab.,
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
Key luminosity issues of the positron source Wei Gai.
Status of target and photon collimator work for polarized e+ LCWS 2014, Belgrade, Serbia 7 th October 2014 Sabine Riemann, Friedrich Staufenbiel, DESY.
Update on ILC Positron source study at ANL since the Durham/UK Meeting10/2010 Wan-Ming Liu, Wei Gai.
Current standing of the undulator based ILC positron source Wei Gai AWLC 14 FNAL, May
Development of a Positron Production Target for the ILC Positron Source Capture Optics Positron beam pipe/ NC rf cavity Target wheel Vacuum feedthrough.
20 April 2009 AAP Review Global Design Effort 1 The Positron Source Jim Clarke STFC Daresbury Laboratory.
LITHIUM LENS FOR EFFECTIVE CAPTURE OF POSITRONS Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY Positron Source Meeting, Jan30-Feb2.
1 Alexander Mikhailichenko Cornell LEPP, Ithaca, NY Linear Collider Workshop of Americas ALCPG, September 30, 2009 Albuquerque NM LITHIUM LENS STUDIES.
Undulator Based ILC Positron Source Parameters Wei Gai ANL ALLCPG 2011 March 20, 2011,
Welcome and Introduction to the Workshop Jim Clarke ASTeC & Cockcroft Institute Daresbury Laboratory ILC Positron Source Collaboration Meeting 29 – 31.
ILC/CLIC e + generation working group Jim Clarke, STFC Daresbury Laboratory and Louis Rinolfi, CERN.
10/9/2007 Global Design Effort 1 Optical Matching Device Jeff Gronberg / LLNL October 9, 2007 Positron source KOM - Daresbury This work performed under.
Ian Bailey Cockcroft Institute/ Lancaster University IWLC October 21 st, 2010 Overview of Undulator-Based Sources for LC.
May Global Design Effort Americas Slide 1 May 2007 ILC Positron Systems Update J. C. Sheppard and V. Bharadwaj SLAC May 7, 2007.
K. Floettmann KEK, Nov , 2004 GAMMA BASED POSITRON SOURCE OPTIONS FOR ILC Klaus Floettmann DESY.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
Update on ILC Production and Capturing Studies Wei Gai, Wanming Liu and Kwang-Je Kim ILC e+ Collaboration Meeting IHEP Beijing Jan 31 – Feb 2, 2007.
22 th October 2010 IWLC Sources working group J. Clarke, T. Omori, L. Rinolfi, A. Variola Summary of Sources working group WG1 with contributions from.
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
Positron Sources for Linear Colliders* Wei Gai JPOS 2009, Jefferson Lab, March 26, 2009 * Acknowledgement of contributions from the ILC and CLIC e+ collaborations.
F.Staufenbiel / EuCARD 2 / Heat load and stress studies of the ILC collimator G. Moortgat-Pick 1;2 S. Riemann 2, F. Staufenbiel 2, A. Ushakov.
November 20, 2008 A. Brachmann Slide 1 Sources Session Summary LCWS 2008 A. Brachmann, J. Clarke.
Positron Source Update Jim Clarke ASTeC & Cockcroft Institute Daresbury Laboratory ILC 08, University of Illinois at Chicago, 17 th November 2008.
Undulator Based ILC positron source for TeV energy Wanming Liu Wei Gai ANL April 20, 2011.
ILC e - and e + sources overview Jim Clarke STFC Daresbury Laboratory, UK On behalf of ILC Positron Sources Group.
Positron polarization at the ILC: RDR vs. SB2009 Sabine Riemann, DESY Zeuthen International Workshop on Linear Colliders 2010, Geneva October 25-29, 2010.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Positron Source for Linear Collider Wanming Liu 2013 DOE Review.
Oct. 6, ILC Positron Source Group Meeting Short report by S. Riemann September 2006, RAL.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
Progress with Zeuthen Meeting Actions Jim Clarke ASTeC, STFC Daresbury Laboratory.
Positron Source Report Jim Clarke STFC Daresbury Laboratory/Cockcroft Institute.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
A Positron Target Concept for the ILC
Positron production rate vs incident electron beam energy for a tungsten target
Update on e+ Source Modeling and Simulation
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Pair-Production Target
Positron Update ILC R&D Meeting/ March 12, 07 VB & JCS
Status of the CLIC main beam injectors
NC Accelerator Structures
ILC RDR baseline schematic (2007 IHEP meeting)
CLIC Undulator Option for Polarised Positrons
ILC/CLIC e+ generation working group
Future Work Plan and Action Items
ILC RDR baseline schematic (2007 IHEP meeting)
Helical Undulator Insertion Device The heLiCal collaboration
May 2007 ILC Positron Systems Update
Summary for the Sources working group
CEPC Injector positron source
CEPC Injector positron source
Presentation transcript:

Undulator Based ILC Positron Source Studies Wei Gai Argonne National Laboratory CCAST ILC Accelerator Workshop Beijing, Nov 5 – 7, 2007

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Acknowledgement: The reported works are produced by the ILC positron collaborations: SLAC, LLNL, ANL, ORNL, BNL, KEK, RAL, Daresbury/Cockcroft, DESY and others. Most Recent Summaries can be found at:

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Nominal Source Parameters ParameterSymbolValueUnits Bunch PopulationNbNb 2x10 10 # Bunches per pulsenbnb 2625# Bunch spacingtbtb 369ns Pulse repetition ratef rep 5Hz Injection Energy (DR)E0E0 5GeV Beam Power (x1.5)PoPo 300kW Polarization e-(e+)P80(30)%

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Positron Source Layout (undulator based scheme)

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Winding undulator on a custom built winding machine Undulator winding (RAL/UK) Courtesy Jim Clarke of CCRL/Daresbury

New tapering tested: conical transition from Iron to brass helix yoke New original technology of wire return tested New iron spacing technology New winding machine Right now the cold mass has diameter 1.5 inch. Designed cold mass with1 inch diameter 6 Fabricated undulator with 6.35 mm Inner diameter (1/4”) available for the beam; 13.5 mm period  K=1.48 measured 1 in Alexander Mikhailichenko/Cornell

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Target –100 m/s rim speed –1-m diameter wheel –1.4 cm –Ti-96%Al-4%V –8% heat deposition Stress from motion, stress from heating Vacuum seals that allow water flow and rotation Magnetic fields & moving metal

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Cockroft institute prototype experiment simulation Technical drawing provided by I.Bailey Simulation, Induced field, z-component, 2000RPM z0z0 D – 1m, rim width – 30mm, rim thickness – 14mm, distance between magnet poles is 5cm, field – 1.5Tesla

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Photon Number Spectrum Number of photons per e- per 1m undulator: Old BCD: UK1: 1.946; UK2: 1.556; UK3: Cornell1: 0.521; Cornell2: 1.2; Cornell3: 0.386

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Initial Polarization of Positron beam at Target exit(K=0.92 u=1.15)

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Initial Pol. Vs Energy of Captured Positron Beam

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Yield contribution from different harmonics – new baseline undulator, without collimator High order harmonics are important

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Comparison of positron yield from different undulators High K DevicesLow K Devices BCDUK IUK IIUK IIICornell ICornell IICornell III Period (mm) K Field on Axis (T) Beam aperture (mm)Not Defined First Harmonic Energy (MeV) Yield(Low Pol, 10m drift)~2.4~1.37~1.12~0.86~0.39~0.75~0.54 Yield(Low Pol, 500m drift) ~2.13~1.28~1.08~0.83~0.39~0.7~0.54 Yield(Pol)~1.1~0.7~0.66~0.53~0.32~0.49~0.44 Target: 1.42cm thick Titanium

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Immersed target works well in simulation, but can we use it? Difficulties: Conventional magnets, ~ MW power supply. Rotating in the magnetic field, people use this scheme for breaks. What else we can do? Build pulsed magnet; Lithium Lens(?) Use ¼ wave transformer scheme.

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 SLC OMD was a pulsed flux concentrator It is a large extrapolation from SLC to ILC –1  s -> 1ms pulse width Previous magnet for hyperon experiment was the closest thing we could find. –Cryogenic nitrogen cooling of the concentrator plates. –ANL and LLNL did initial rough electromagnetic simulations. Not impossible but an engineering challenge. –No real engineering done so far.

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 ¼ wave solenoid seems more feasible Capture efficiency is only 25% less than flux concentrator Low field at the target reduces eddy currents This is probably easier to engineer than flux concentrator SC, NC or pulsed NC? ANL ¼ wave solenoid simulations W. Liu

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Lithium lens Lithium Lens –Will lithium cavitate under pulsed heating? window erosion –Will lithium flow adequately cool the windows? –Lens is defocusing for electrons Increased heating and radiation load in the capture section P.G. Hurh & Z. Tang A. Mikhailichenko Alexander Mihkailchenko, Cornell Univ.

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Capture Efficiency: FZ, YN SLAC; WL ANL Sheppard, SLAC

CCAST ILC Meeting, IHEP, Beijing, Nov 5-7, 2007 Summary Systematic studies of the ILC positron source performed. Various issues addressed. Basic-Basic (1/4 wave) scheme may work, but require 300 m long undulator and 3 GeV Linac to compensate the energy loss. Challenges and further works: –Target design: Mechanical and materials. (Ti, W, Eddy current and radiation damages). –Capturing Magnets (Lens): Small R&D investments may yield huge savings. –Target Hall: Remote handling target and other beamline components. –Undulator: electron beam jitter tracking through the undulator, polarizations, and other errors like undulator and alignments. –Electron beam properties after traversing the undulator, anything changes except energy?