Chapter 9 Molecular Geometry and Bonding Theories
Valence Shell Electron Pair Repulsion (VSEPR) Theory based on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimizedbased on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimized places regions of electron density as far apart as possibleplaces regions of electron density as far apart as possible produces molecular geometryproduces molecular geometry
Steps in Predicting Molecular Geometry draw Lewis structure of substancedraw Lewis structure of substance count regions of electron density on central atomcount regions of electron density on central atom draw electron pair shapedraw electron pair shape derive and draw molecular geometryderive and draw molecular geometry
Regions of Electron Density single covalent bondsingle covalent bond double covalent bonddouble covalent bond triple covalent bondtriple covalent bond lone pairlone pair unpaired electronunpaired electron
# Regions Shape 2linear 180°
Shape 2 3 linear trigonal planar 180° 120°
# Regions Shape 2 3 linear trigonal planar 4tetrahedral 180° 120° 109.5°
5 trigonal bypyramidal 90° 120°
5 6 octahedral 90° 90° 120°
Examples Determine the electron-pair and molecular geometries of each of the following. Draw and name each.
Beryllium Chloride
BeCl 2
Beryllium Chloride BeCl 2 1. Lewis structure
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom 2
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom 2 3. Draw and name electron-pair shape Cl Be Cl linear
Beryllium Chloride BeCl 2 3. Draw and name electron-pair shape Cl Be Cl linear 3. Derive and name molecular shape Cl Be Cl linear
Carbon Dioxide
CO 2
Carbon Dioxide CO 2 O C O
Carbon Dioxide CO 2 O C O 2 regions
Carbon Dioxide CO 2 O C O 2 regions Electron-pair shape, linear O C O
Carbon Dioxide CO 2 O C O 2 regions Electron-pair shape, linear O C O Molecular shape, linear O C O
Aluminum Bromide
AlBr 3
Aluminum Bromide AlBr 3 Al Br Br Br
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions Electron-pair shape trigonal planar Al Br Br Br
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions Electron-pair shape trigonal planar Al Br Br Br Molecular shape trigonal planar Al Br Br Br
Nitrite Ion
NO 2 –
Nitrite Ion NO 2 – ONO –
Nitrite Ion NO 2 – ONO – 3 regions
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O –
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O –
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O – Molecular shape bent bent N O O –
Carbon Tetrabromide
CBr 4
Carbon Tetrabromide CBr 4 C Br Br Br Br
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions Electron-pair shape tetrahedral C Br Br Br Br
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions Electron-pair shape tetrahedral C Br Br Br Br Molecular shape tetrahedral
Arsine
Arsine AsH 3
Arsine As H H H
Arsine As H H H 4 regions electron-pair shape, tetrahedral
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H molecular shape trigonal pyramid or tripod
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H molecular shape trigonal pyramid or tripod As H H H
Water H2OH2OH2OH2O
Water H2OH2OH2OH2O O HH
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH molecular shape bent
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH molecular shape bent O HH
Phosphorus Pentafluoride
PF 5 P F F F F F
Phosphorus Pentafluoride PF 5 P F F F F F 5 regions electron-pair shape trigonal bipyramidal F F F F F P
Phosphorus Pentafluoride PF 5 P F F F F F 5 regions electron-pair shape trigonal bipyramidal F F F F F P molecular shape trigonal bipyramidal
Sulfur Tetrafluoride
SF 4
Sulfur Tetrafluoride SF 4 S F F F F
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S F F F F S molecular shape distorted tetrahedral
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S molecular shape see saw S F F F F
Chlorine Trifluoride
ClF 3
Chlorine Trifluoride ClF 3 F F F Cl
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F molecular shape T-shape Cl F F F
Sulfur Hexafluoride
SF 6
Sulfur Hexafluoride SF 6 S F F F F F F
Sulfur Hexafluoride SF 6 S F F F F F F 6 regions electron-pair shape octahedral S F F F F F F
Sulfur Hexafluoride SF 6 S F F F F F F 6 regions electron-pair shape octahedral S F F F F F F molecular shape octahedral
Bromine Pentafluoride
BrF 5
Bromine Pentafluoride BrF 5 Br F F F F F
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F molecular shape square pyramidal Br F F F F F
Xenon Tetrafluoride
XeF 4
Xenon Tetrafluoride XeF 4 Xe F F F F
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F Xe F F F F molecular shape square planar
Tribromide Ion Br 3 – Br 3 –
Tribromide Ion Br 3 – Br 3 – Br Br Br
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br molecular shape linear Br Br Br
Polarity of Molecules molecules in which dipole moments of the bonds do not cancel are polar moleculesmolecules in which dipole moments of the bonds do not cancel are polar molecules molecules that do not contain polar bonds or in which all dipole moments cancel are non-polar moleculesmolecules that do not contain polar bonds or in which all dipole moments cancel are non-polar molecules
CO 2 vs H 2 O C O O O H H
C O O O H H + – + –
CO 2 vs H 2 O C O O O H H + – + –
CO 2 vs H 2 O C O O O H H + – + – 0
CO 2 vs H 2 O C O O O H H + – + – 0
CO 2 vs H 2 O C O O O H H + – + – 0yx yx
CO 2 vs H 2 O C O O O H H + – + – yx y x
CO 2 vs H 2 O C O O O H H + – + – nonpolar polar
Study and Know 9.2 Polarity of Molecules
VSEPR Theory only explains molecular shapes says nothing about bonding in molecules Enter Valence Bond (VB) Theory atoms share electron pairs by allowing their atomic orbitals to overlap
+ H H
+ H H bond
+ H H 1s E H
+ H H 1s E H H
+ F F F2F2F2F2
+ F F F2F2F2F2
1s 2s 2p E F
1s 2s 2p F E F
Methane CH 4 1s 2s 2p E C
Methane 1s 2s 2p E C H H
Methane 1s 2s 2p E C H H H+H+H+H+
Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H–
Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H– C H H H H 90° 90°
Methane C H H H H 109.5° Tetrahedral Geometry 4 Identical Bonds 4 Identical Bonds
Problem and Solution C must have 4 identical orbitals in valence shell for bonding solution: hybridization
Methane CH 4 1s 2s 2p E
Methane 1s 2s 2p E 1s 2s 2p E
Methane 1s 2s 2p E 1s 2s 2p E
Methane 1s 2s 2p E 1s 2s 2p E
Methane 1s 2s 2p E 1s E sp 3
– p 2s
– = 2p 2s an sp 3 hybrid orbital
4 identical sp 3 hybrid orbitals
tetrahedral geometry
4 identical sp 3 hybrid orbitals tetrahedral geometry
4 identical sp 3 hybrid orbitals tetrahedral geometry
Methane CH 4 1s 2s 2p E 1s E sp 3 H H H H
Hybridization vs Shape (e – pair) sp linearsp linear sp 2 trigonal planarsp 2 trigonal planar sp 3 tetrahedralsp 3 tetrahedral sp 3 d trigonal bipyramidalsp 3 d trigonal bipyramidal sp 3 d 2 octahedralsp 3 d 2 octahedral
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 –
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br Br Br 5 regions electron-pair shape trigonal bypyramidal
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br Br Br 5 regions electron-pair shape trigonal bypyramidal sp 3 d
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2 O C O 2 regions Electron-pair shape, linear
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2 O C O 2 regions Electron-pair shape, linear sp
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br 3 regions Electron-pair shape trigonal planar
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br 3 regions Electron-pair shape trigonal planar sp 2
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F 6 regions electron-pair shape octahedral
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F 6 regions electron-pair shape octahedral sp 3 d 2
Consider Ethylene, C 2 H 4
C C H H H H
C C H H H H 3 regions trigonal planar
Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2
Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2
1s 2s 2p E
1s 2s 2p E 1s 2s 2p E
1s 2s 2p E 1s 2p E
2p
2p
bond framework
bond
Consider Acetylene, C 2 H 2 C C H H
C C H H 2 regions linear
Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp
Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp
1s 2s 2p E 1s 2s 2p E
1s 2s 2p E 1s sp 2p E
sp sp 2p 2p
bond framework
bonds
Generally single bond is a bondsingle bond is a bond double bond consists of 1 and 1 bonddouble bond consists of 1 and 1 bond triple bond consists of 1 and 2 bondstriple bond consists of 1 and 2 bonds
Molecular Orbital (MO) Theory when atoms combine to form molecules, atomic orbitals overlap and are then combined to form molecular orbitals orbitals are conserved a molecular orbital is an orbital associated with more than 1 nucleus like any other orbital, an MO can hold 2 electrons consider hydrogen atoms bonding to form H 2
+ H H
add subtract
add subtract bonding antibonding
add subtract bonding antibonding * 1s 1s
1s 1s * 1s H H H2H2H2H2 E E
1s 1s 1s * 1s H H H2H2H2H2 E E
1s 1s 1s * 1s H H H2H2H2H2 E E
1s 1s 1s * 1s H H H2H2H2H2 E E
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2 total spin = 0
Diamagnetic: slightly repelled by a magnetic fieldDiamagnetic: slightly repelled by a magnetic field total spin = 0 paramagnetic: attracted to a magnetic fielsparamagnetic: attracted to a magnetic fiels total spin not 0 Bond Order = 1/2 (bonding e – – antibonding e – )Bond Order = 1/2 (bonding e – – antibonding e – )
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2 total spin = 0 diamagnetic
1s 1s 1s * 1s H H H2H2H2H2 E E BO = 1/2 ( 2 – 0) = 1
Consider He 2
1s 1s 1s * 1s He He He 2 E E
1s 1s 1s * 1s He He He 2 E E
1s 1s 1s * 1s He He He 2 E E ( 1s ) 2 ( * 1s ) 2
1s 1s 1s * 1s He He He 2 E E diamagnetic
1s 1s 1s * 1s He He He 2 E E BO = 1/2 ( 2 – 2 ) = 0
Combination of p Atomic Orbitals
2p 2p
subtract add
bonding MO antibonding MO subtract add
bonding MO antibonding MO * 2p 2p subtract add
2p 2p
subtract add
antibonding MO bonding MO subtract add
2p * 2p subtract add
2p * 2p subtract add
Consider Li 2
2s 2s 2s * 2s Li Li Li 2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s Li Li Li 2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s Be Be Be 2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s Be Be Be 2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s B B B2B2B2B2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s B B B2B2B2B2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s C C C2C2C2C2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s N N N2N2N2N2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s O O O2O2O2O2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s F F F2F2F2F2 E E 2p 2p * 2p 2p 2p * 2p
2s 2s 2s * 2s Ne Ne Ne 2 E E 2p 2p * 2p 2p 2p * 2p