1 Influence of Microhydration on the Ionization Energy Thresholds of Thymine University of Southern California Department of Chemistry Kirill Khistyaev, Prof. Anna I. Krylov 64th OSU International Symposium on Molecular Spectroscopy June 22-26, 2009
2 Importance of ionization processes in DNA 1 1 Bernd Giese, Annu. Rev. Biochem :51–70 DOI: /annurev.biochem
3 Experimental data 2. PIE curves. a.thymine b.thymine−H 2 O c.thymine−(H 2 O) 2 d.thymine−(H 2 O) 3 Photoionization efficiency (PIE) curves recorded for 2 Leonid Belau, Kevin R. Wilson, Stephen R. Leone, and Musahid Ahmed, Vacuum-Ultraviolet Photoionization Studies of the Microhydration of DNA Bases (Guanine, Cytosine, Adenine, and Thymine), J. Phys. Chem. A 2007, 111,
4 Experimental results. Appearance Energies of Four DNA Bases and Complexes with Water monomermonohydratedihydratetrihydrate thymine8.90 ± ± ± 0.1 adenine8.30 ± ± ± 0.1 guanine8.1 ± ± cytosine8.65 ± ± ± ± 0.1
5 Theoretical studies. Thymine + H 2 O tautomers. 2 2 Jaroslav Rejnek, Michal Hanus, Martin Kabela, Filip Ryjaek and Pavel Hobza,Phys, Chem. Chem. Phys., 2005, 7, 2006–2017
6 Thymine + H 2 O geometry optimization Thymine Thymine + H 2 O Δ rimp2/ccPVTZ
7 Ionization Energies, eV A'' 9.01 (9.13 for Thymine) A' (10.13) A'' (10.52) A' (11.04) Thymine + H 2 O (Thymine) EOM-CCSD/cc-PVTZ ΔIE = 0.12 eV ΔIE = 0.03 eV ΔIE = 0.01 eV ΔIE = eV
8 Ionization Energies, eV Thymine + H 2 O (Thymine) A'' (12.39 for H 2 O) A'' (12.67 for Thymine) A' (13.82 for Thymine) EOM-CCSD/cc-PVTZ
9 IE of Thymine at geometry of Thymine + H 2 O cluster IP of Thymine at the equilibrium geometry is 9.13 eV IP of Thymine at the equilibrium geometry of Thymine + H 2 O complex is 9.16 eV ΔIP = 0.03 eV due to the geometry change EOM-CCSD/cc-PVTZ
10 Charge distribution. First Ionization Energy Element# NutralIonizedΔ C N O O O H H ∑H 2 O ΔIP = 0.12 eV NBO/EOM-CCSD/6-31+G(d)
11 Charge distribution. Second Ionization Energy Element# NutralIonizedΔ O O O H H ∑H 2 O ΔIP = 0.03 eV NBO/EOM-CCSD/6-31+G(d)
12 Charge distribution. Third Ionization Energy Element# NutralIonizedΔ N O O O H H ∑H 2 O ΔIP = 0.01 eV NBO/EOM-CCSD/6-31+G(d)
13 Charge distribution. Fourth Ionization Energy Element# NutralIonizedΔ O O O H H ∑H 2 O ΔIP = eV NBO/EOM-CCSD/6-31+G(d)
14 Correlation between ΔIE and charge transfer between H 2 O and Thymine
15 Charge-dipole interaction. -δ’-δ’ +δ’’
16 Correlation between charge-dipole interaction and ionization energy. IE1 IE2 IE3 IE4
17 Geometry of the first ionized state (omegaB97X-D/cc-pvtz)
18 IE of different structures of Thymine + H 2 O
19 IE of different structures of Thymine + H2O Thymine Th+H2O t1 ΔIE Th+H2O t2 ΔIE Th +H2O t3 ΔIE
20 IE of different structures of Thymine + H2O
21 Conclusions: First calculated IE of thymine + H 2 O cluster is 9.01 eV which is 0.12 eV lower than IE of thymine. Charge distribution between thymine and water for the fist 3 ionized states can’t explain change in IE. Geometry change can’t explain the difference in IP. Change in IE can be explained by charge-dipole interaction between thymine and water molecule. Oxygen atom of water molecule stabilize a positive charge on nearest atoms
22 Acknowledgments Prof. Anna I. Krylov group Prof. Anna I. Krylov group Dr. Ksenia Bravaya Dr. Ksenia Bravaya iOpenShell center for computational studies iOpenShell center for computational studies QChem ab initio package QChem ab initio package
23 Thank you for your attention