Molecular Geometry and VSEPR Theory. VSEPR Theory Valence Shell Electron Pair Repulsion Theory States that electron pairs repel each other and assume.

Slides:



Advertisements
Similar presentations
Copyright McGraw-Hill Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories.
Advertisements

Molecular Geometry and Bonding Theories. The properties of a molecule depend on its shape and and the nature of its bonds. In this unit, we will discuss.
Molecular Shape The Geometry of molecules. Molecular Geometry nuclei The shape of a molecule is determined by where the nuclei are located. nuclei electron.
Molecular shapes Balls and sticks. Learning objectives  Apply VSEPR to predict electronic geometry and shapes of simple molecules.
Chapter 9 Molecular Geometry and Bonding Theories.
Drawing Lewis Structures and VSEPR. Draw basic Lewis dot structures of atoms and compounds. Using VSEPR, predict bond shape from electron arrangement.
Drawing Lewis Structures and VSEPR. Draw basic Lewis dot structures of atoms and compounds. Using VSEPR, predict bond shape from electron arrangement.
Molecular Shapes Chapter 6 Section 3. Molecular Structure It mean the 3-D arrangement of atoms in a molecule Lewis dot structures show how atoms are bonded.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Carvone Bucky ball Molecular Geometry Chapter 8 Part 2.
+ Bonding Part III Unit 5: Bonding Mrs. Callender VS E P R.
Molecular Geometry ( Textbook: page )
Molecular Geometry Chapter 6.5.
VSEPR Theory Valence Shell Electron Pair Repulsion.
Monday, November 5 Take out your “VSEPR Theory” notes and new piece of paper Marshmallow lab tomorrow- Thank you Brianna L and Kristi H for donating supplies.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chemical Bonding and Molecular Geometry
Chemical Bonding: Molecular Shapes. VSEPR Theory From a correct Lewis structure, we can get to the 3-D shape using this theory. VSEPR stands for valence.
IIIIII Molecular Geometry Molecular Structure. A. VSEPR Theory  Valence Shell Electron Pair Repulsion Theory  Electron pairs orient themselves so that.
Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. Valence shell electron pair.
Molecular Structure Molecular geometry is the general shape of a molecule or the arrangement of atoms in three dimensional space. Physical and chemical.
Chemistry Chapter 9 Notes #3. Representing Molecules Molecular Formula –Ex. CH 4 –Ex. H 2 O Structural/ Lewis Formula Ball & Stick Model Space Filling.
VSEPR Theory Valence Shell Electron Pair Repulsion.
VESPR Theory. Molecular Structure Molecular structure – _______________ arrangement of atoms in a molecule.
Section 8.13 Molecular Structure: The VSEPR Model VSEPR: Valence Shell Electron-Pair Repulsion. ▪Used to predict a 3-dimensional shape of a molecule ▪Based.
Ch-8 Part II Bonding: General Concepts. Molecular Geometry and Bond Theory In this chapter we will discuss the geometries of molecules in terms of their.
Chemistry 545 Inorganic Chemistry Lecture 1.
VSEPR Theory Valence Shell Electron Pair Repulsion.
Molecular Geometry and VSEPR Theory
Molecular Geometry and Bonding Theories.
Molecular Geometry VSEPR.
VSEPR and Molecular Geometry
TOPIC: Molecular Geometry (Shapes of Molecules) Essential Question: How do you determine the different shapes of molecules?
Molecular Shape (Geometry)
Timberlake LecturePLUS
VSEPR Pronounced vesper…a vespa for her A vest purrs???
Ch. 6 – Molecular Structure
Molecular Geometry bond length, angle determined experimentally
Valence Shell Electron Pair
MOLECULAR GEOMETRY Topic # 18
Ch. 6.5 Bonding Theories Molecular Geometry.
Valence Shell Electron Pair Repulsion Theory (VSEPR)
Bellwork Monday Draw the following Lewis dot structures. CCl4 NH4+
Valence shell electron pair repulsion (VSEPR) model:
Valence Shell Electron Pair Repulsion
MOLECULAR GEOMETRY Bonding Unit.
II. Molecular Geometry (p. 183 – 187)
Chapter 6 – 3 Molecular Geometry (p. 214 – 218)
Ch. 6 – Molecular Structure
Daily Science Draw the Lewis structure for NO2-1 . How many sigma and pi bonds does it have? Draw the Lewis structure for the following and tell how.
Molecular Structure Molecular Geometry.
Molecular Geometry bond length, angle determined experimentally
Valence Shell Electron Pair Repulsion
Molecular Geometry 11/8 Opener:
VESPR Theory.
Molecular Structure II. Molecular Geometry.
Molecular Geometry.
Molecular Geometry bond length, angle determined experimentally
Molecular Geometry bond length, angle determined experimentally
II. Molecular Geometry (p. 183 – 187)
Valence Shell electron pair repulsion model 3D models
Molecular Shapes VSEPR Model
6.5 VSEPR Theory and Molecular Shapes
Valence Shell Electron Pair Repulsion
II. Molecular Geometry (p. 183 – 187)
II. Molecular Geometry (p. 183 – 187)
Valence Shell Electron-pair Repulsion model
Valence Shell Electron Pair Repulsion
Valence Shell Electron Pair Repulsion (VSEPR) Theory
Presentation transcript:

Molecular Geometry and VSEPR Theory

VSEPR Theory Valence Shell Electron Pair Repulsion Theory States that electron pairs repel each other and assume an orientation about an atom to minimize repulsion – the shape a molecule takes is due to this repulsion

Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. AB 2 20 Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry 10.1 linear B B

Cl Be 2 atoms bonded to central atom 0 lone pairs on central atom 10.1

AB 2 20linear Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR AB 3 30 trigonal planar 10.1

AB 2 20linear Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR AB 3 30 trigonal planar 10.1 AB 4 40 tetrahedral

10.1

AB 2 20linear Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR AB 3 30 trigonal planar 10.1 AB 4 40 tetrahedral AB 5 50 trigonal bipyramidal trigonal bipyramidal

10.1

AB 2 20linear Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR AB 3 30 trigonal planar 10.1 AB 4 40 tetrahedral AB 5 50 trigonal bipyramidal trigonal bipyramidal AB 6 60 octahedral

10.1

bonding-pair vs. bonding pair repulsion lone-pair vs. lone pair repulsion lone-pair vs. bonding pair repulsion >>

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR AB 3 30 trigonal planar AB 2 E21 trigonal planar bent 10.1

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR AB 3 E31 AB 4 40 tetrahedral trigonal pyramidal 10.1

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR AB 4 40 tetrahedral 10.1 AB 3 E31tetrahedral trigonal pyramidal AB 2 E 2 22tetrahedral bent H O H

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR 10.1 AB 5 50 trigonal bipyramidal trigonal bipyramidal AB 4 E41 trigonal bipyramidal See-Saw (distorted tetrahedron)

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR 10.1 AB 5 50 trigonal bipyramidal trigonal bipyramidal AB 4 E41 trigonal bipyramidal See-Saw AB 3 E 2 32 trigonal bipyramidal T-shaped Cl F F F

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR 10.1 AB 5 50 trigonal bipyramidal trigonal bipyramidal AB 4 E41 trigonal bipyramidal See-Saw AB 3 E 2 32 trigonal bipyramidal T-shaped AB 2 E 3 23 trigonal bipyramidal linear I I I

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR 10.1 AB 6 60 octahedral AB 5 E51 octahedral square pyramidal Br FF FF F

Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry VSEPR 10.1 AB 6 60 octahedral AB 5 E51 octahedral square pyramidal AB 4 E 2 42 octahedral square planar Xe FF FF

10.1

Predicting Molecular Geometry 1.Draw Lewis structure for molecule. 2.Count number of lone pairs on the central atom and number of atoms bonded to the central atom. 3.Use VSEPR to predict the geometry of the molecule. What are the molecular geometries of SO 2 and CCl 4 ? (In SF 4, S uses an expanded octet of 10.) AB 2 Ebent C Cl AB 4 Tetrahedral 10.1 S O O S O O

Parent shapes for EX n molecules (n = 2-5) Formula n shapeshapes of structures EX 2 2 linear EX 3 3 trigonal planar EX 4 4 tetrahedral EX 5 5 trigonal bipyramidal

Parent shapes for EX n molecules (n = 6-8) Formula n shapeshapes of structures EX 6 6 octahedral EX 7 7 pentagonal bipyramidal EX 8 8 square antiprismatic

Activity Go around to each lab station At each station there are two molecules In your data table, –write the chemical formula (determine the class) –draw the Lewis structure –determine the molecular geometry Example: CompoundLewis StructureMolecular Geometry NH 3 AB 3 E Trigonal Bipyramidal

Activity CompoundLewis StructureMolecular Geometry CO 2 AB 2 Linear CH 2 O AB 3 Trigonal Planer NO 2 - AB 2 E Bent CH 4 AB 4 Tetrahedral

Activity CompoundLewis StructureMolecular Geometry NH 3 AB 3 E Trigonal Pyramidal H 2 O AB 2 E 2 Bent PCl 5 AB 5 Trigonal Bipyramidal SI 6 AB 6 Octohedral