+ CCM1 Unit 5. + Warm Up – January 23 Complete the student Information sheet on your desk.

Slides:



Advertisements
Similar presentations
Warm Up Solve. 1. log16x = 2. logx1.331 = log10,000 = x 1.1 4
Advertisements

Exponential Functions
LSP 120: Quantitative Reasoning and Technological Literacy Section 118
Warm-Up Identify each variable as the dependent variable or the independent for each of the following pairs of items the circumference of a circle.
Expressions and Equations
HOMEWORK CHECK Take out your homework and stamp page. While I am stamping homework, compare answers with your team.
Chapter 8 Exponential and Logarithmic Functions
Students are expected to: Construct and analyse graphs and tables relating two variables. Solve problems using graphing technology. Develop and apply.
Submitted to - Sh.Bharat Bhushan Sir Submitted by- Mayank Devnani
Chapter 8 Exponential and Logarithmic Functions
Math 96A Test 1 Flash Cards.
Flipper Numbers.
Linear Algebra Achievement Standard 1.4.
1.) If there are initially 100 fruit flies in a sample, and the number of fruit flies decreases by one-half each hour, How many fruit flies will be present.
Lesson 6.2 Exponential Equations
Final Exam Review Advanced Algebra 1.
Standard #1: Write an Algebraic Expression from a word problem. Text Section: 1.1.
Unit 1 Understanding Numeric Values, Variability, and Change 1.
Warm Up – 1 st find your new seat!. Exam Review Worksheet Take 10 minutes INDIVIDUALLY to fill out the tables on the worksheet. Write down anything you.
Exponential Growth Exponential Decay
Exponential and Logarithmic Functions
Math 002 College Algebra Final Exam Review.
Unit 7: Non-Linear Equations & Real- World Applications Section 1: Compound Interest Using 5x³: 5 is the coefficient, x is the base, 3 is the exponent.
Chapter 8 Exponents and Exponential Functions
+ CCM1 Unit 5. + Warm Up 1 – January 24 th + Homework Check Score = Dependent, Time = independent 4. M = 15. x < y7. y=2x+5 8.
AS Mathematics 2.2 Draw straightforward non-linear graphs Level 2 3 CreditsEXTERNAL.
Mid Term Review Bybee & Holloway 7 th Grade Math Fall 2011.
Zero and Negative Exponents
Exponents and Exponential Functions
7-5 Exponential and Logarithmic Equations and Inequalities Warm Up
Exponential Functions 1/30/2013. Warm-Up 3: A population of 25 bacteria doubles in size every week. a)Write an exponential function to model.
FUNCTIONS AND GRAPHS.
Methods and Solving Equations
An easy way to remember the order of operations is to use the mnemonic device: PEMDAS. P → Parentheses (Grouping Symbols) E → Exponents (Powers) MD → Multiplication.
Quiz 7-1: 1. Where does the graph cross the y-axis? 2. f(1) = ? 3. Horizontal asymptote = ? 4. How was the function transformed to get f(x) above? to get.
Ratio A comparison of two numbers by division 4 out of 5 people choose product X 4 out of 5 4 to 5 4:5.
Warm Up 1) Change from percent to decimal 56% 2) Tom had four flowers patch. The flowers grew exponentially, doubling every 8 hours. 1) Write the equation.
8.5 Exponential Growth and 8.6 Exponential Decay FUNctions
Objective Write and evaluate exponential expressions to model growth and decay situations.
7.1 R eview of Graphs and Slopes of Lines Standard form of a linear equation: The graph of any linear equation in two variables is a straight line. Note:
+ CCM 1B Unit 5 – Day 2 Properties of Exponents. + Warm Up – January 24 th.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
Warm-Up 7 Identify each variable as the dependent variable or the independent for each of the following pairs of items 1. the circumference of a circle.
College Algebra & Trigonometry
Holt McDougal Algebra Exponential Functions, Growth, and Decay 4-1 Exponential Functions, Growth and Decay Holt Algebra 2 Warm Up Warm Up Lesson.
Warm Up 1)A population of 4000 triples in size every year. Find the population in 4 years. 2)A bacteria culture of 20 increases by a growth factor of 2.
2/5/2013. Warm-Up 3 ( ) 1. Create a geometric sequence with 4 terms. 2. Write an explicit rule for the table: 3. How many bacteria would there.
Math II Unit 2 (Part 2). Exponents Exponents EQ: How do you use properties of exponents to simplify algebraic expressions?
Grade 10 Mathematics Graphs Application.
Review: Final Math Exam Tom Steward. Chapter. 1 The problem solving plan 1.read and understand 2.make a plan 3.solve the problem 4.look back.
Holt McDougal Algebra Exponential Functions, Growth, and Decay Warm Up Evaluate (1.08) (0.95) (1 – 0.02) ( )
Algebra 2 Exploring Exponential Models Lesson 7-1.
Unit 4 Review! Objective: to review linear equations Common Core State Standards 8.EE.5; 8.EE.6; 8.EE.7; 8.EE.8.
Welcome BACK! Common Core Math 1 Part 2 Time to get Serious EOC.
Chapter 7 Exponential and Logarithmic Functions. 7-1 Exponential Growth.
DAY 5 – EXPONENTIAL GROWTH AND DECAY. ZOMBIES! A rabid pack of zombies is growing exponentially! After an hour, the original zombie infected 5 people.
Entry Task Solve. 1. log16x = 2. log10,000 = x
CRCT Domain Review Numbers and Operations. Key Vocabulary  Rational Numbers  Any number that can be made by dividing one integer by another. The word.
AP PHYSICS 1 SUMMER PACKET Table of Contents 1.What is Physics? 2.Scientific Method 3.Mathematics and Physics 4.Standards of Measurement 5.Metric System.
+ Chapter 8 Exponential and Logarithmic Functions.
P → Parentheses (Grouping Symbols) E → Exponents (Powers)
2nd Nine Weeks Vocabulary Review Coach Whitlock
Writing Linear Equations
7-Chapter Notes Algebra 1.
Chapter 8 Exponential and Logarithmic Functions
Day 2 : Exponent Rules and Growing Sequences
Integrated Math Midterm Review
Exponential Functions and Graphs
Warm-Up 1 Find the slope of the line passing through the points (1, -9) and (4, 6). 2. Sarah has been clothes shopping each Saturday for the past 6 weeks.
Chapter 2 Functions, Equations, and Graphs
Presentation transcript:

+ CCM1 Unit 5

+ Warm Up – January 23 Complete the student Information sheet on your desk.

+ What Do I Remember Spend 15 minutes going though the “What Do I Remember” worksheet

+ What you should have remembered

+ Mean- average Median- middle number Describing Data- SOCS Standard Deviation- How much variation exists from the average Range-The difference between the highest and lowest number

+ Box Plot- Use the 5 number summary Dot Plot- Histogram-

+ 5 Number Summary- Minimum, Q1, Median, Q3, and Maximum IQR- The difference between Q3 and Q1 Outliers- A number that is numerically distant from the rest of the data

+ Categorical – data that can be separated by category EX) sorting students by the model of car they have Quantitative – data that can be separated by numerical values EX) sorting students by the number of siblings they have

+ Algebraic Expressions- Does not have an equal sign, You evaluate Algebraic Expressions Algebraic Equations- has an equal sign Order of Operations- (PEMDAS) Parenthesis Exponents Multiplication/Division Addition/Subtraction Evaluate- means to solve

+ Solving Equations- Follow reverse order of operations to get the variable by its self on one side of the equation Whole Numbers- Includes zero and all the positives (no fractions or decimals) Integer- Includes all negatives, zero, and all positives (No fractions or decimals) Variable- a symbol that stands for a number Ex) x – 2 = 10 X is the variable

+ Subtracting Negatives- Keep, change, change Multiplying Negatives- Neg *Neg = Pos Neg*Pos = Neg Pos * Neg = Neg Pos*Pos = Pos Dividing Negatives Neg /Neg = Pos Neg/Pos = Neg Pos /Neg = Neg Pos/Pos = Pos

+ Distributive Property- Distribute to EVERYTHING inside the parenthesis Constant- just a number, does not have a variable Coefficient- The NUMBER in front of (multiplied by) a variable Like Terms-Terms with the same exact variables Substitution- Putting a number in place of a variable to simplify an expression Equivalent expression- two expressions that have the same most simplified form Solving Equation- Follow reverse order of operations to get the variable by its self on one side of the equation

+ Less Than < Less than or equal to ≤ Greater Than > Greater Than or Equal To ≥ Open Circle- Use for Closed Circle- Use for ≤ or ≥ Solving Inequalities- Solve like you solve equations; Follow reverse order of operations

+ Domain Independent Variable X’s Goes on x-axis Goes in L1 when finding line of best fit Range Dependent Variable Y’s Goes on y-axis Goes in L2 when finding line of best fit

+ Function Notation f(x) = Example: f(x)= 2x + 4 Now-Next Rule: A recursive rule found by relating a number to what comes before it. Written as Ex) NEXT = NOW + 4 NEXT = NOW/2

+ Direct Variation- Equation: y=kx K = constant of variation Goes through the origin on a graph Finding slope through 2 ordered pairs: (x 1, y 1 ) (x 2, y 2 ) Slope- Intercept Form: y = mx + b M = slope; B = y-intercept Point Slope: y – y 1 = m( x – x 1 ) M = slope; X 1, y 1 are from the ordered pair Standard Form: Ax + By = C No Fractions, C is a constant

+ Parallel Lines- never intersect, have the SAME SLOPE Perpendicular Lines- Slopes are opposite reciprocal + change to – – change to + Flip the fraction

+ Pay It Forward HvCPS8 HvCPS8 To 1:17 6cj8ds From 3:10 to 4:39

+ 1. How many people would receive a Pay It Forward good deed at each of the next several stages of the process? Stage 1:Stage 2: Stage 3:Stage 4: Stage 5:Stage 6: 2. What is your best guess for the number of people who would receive Pay It Forward good deeds at the tenth stage of the process?

+ 3. Which of the graphs below do you think is most likely to represent the pattern by which the number of people receiving Pay It Forward good deeds increases as the process continues over time? Graph Number: ___________

+ 4. Take your values for each stage (from #1) and graph the data. Hint: Your x-axis needs to be the stage number and your y-axis needs to be the number of people receiving Pay It Forward.

+ Mathematical terminology EXPONENTIAL This graphs represents EXPONENTIAL growth. EXPONENTIAL FUNCTIONS. These data sets display properties of EXPONENTIAL FUNCTIONS.

+

+ Warm Up – January 24 th

+ Exponent Rules Review Exponents are a “short-hand” way of multiplying the same quantity over and over. Example: X 4 = (x)(x)(x)(x)

+ Try Some: Expand the following 4 3 Y 4 X 2 y 5 w 6 z 1

+ Using Exponents to simplify Write using exponents X*x*x*x 2*2*2*2*x*x*x*y*y 3*3*3*4*4*4*4*x

+ Zero as an exponent Anything with an exponent of zero equals 1. Ex x 0 = = Y 0 =

+ Negative Exponents When you have a NEGATIVE exponent you turn it POSITIVE and FLIP it. EX x -3

+ Try Some

+ Multiplication When multiplying like bases you ADD exponents Ex: x 4 x 2

+ Try some! X 3 x 4 Y 3 x 4 y 7 z 3 y 2 x 5 z 5 y 6 x 10

+ Exponents of Exponents When you have an exponent of an exponent you MULTIPLY EX: (x 4 ) 3

+ Try Some! (x) 5 (x 2 y 4 ) 5 (2x 3 ) 6

+ Division When you divide like bases you SUBTRACT exponents

+ Try Some

+ Growing Sequences Arithmetic Sequence: goes from one term to the next by always adding (or subtracting) the same value Common Difference : The number added (or subtracted) at each stage of an arithmetic sequence Initial Term : Starting term For example, find the common difference and the next term of the following sequence: 3, 11, 19, 27, 35,...

+ Growing Sequences Geometric Sequence: goes from one term to the next by always multiplying (or dividing) by the same value Common Ratio: The number multiplied (or divided) at each stage of a geometric sequence Determine the common ratio r of the Brown Tree Snake Sequence. 1, 5, 25, 125, 625,...

+

+ Warm Up – January 25 th

+ The geometric sequence from the Brown Tree Snake problem (1, 5, 25, 125, ) can be written in the form of a table, as shown below: The Brown Tree Snake was first introduced to Guam in year 0. At the end of year 1, five snakes were found; at the end of year 2, twenty-five snakes were discovered, and so on…

+ Since we now have a table of the information, a graph can be drawn, where the year is the independent variable (x) and the number of snakes is the dependent variable (y). See below:

+ The curved graph of this problem situation is known as an exponential growth function. An exponential growth function occurs when the common ratio r is greater than one.

+ In your group’s complete the worksheet handed out. Group Work

+

+ Tuesday, January 29 th Warm Up # 4

+ Homework Check – 5.4

+ What is the difference between an arithmetic and geometric sequence? What is the difference between a common ratio & a common difference? Which type of sequence does each go with?

+ The Ladybug Invasion As a biology project, Tamara is studying the growth of a ladybug population. She starts her experiment with 5 ladybugs. The next month she counts 15 ladybugs. 1) The ladybug population is growing arithmetically. How many beetles can Tamara expect to find after 2, 3, and 4 months? Write the sequence. 2) What is the common difference? 3) Now put the sequence into a table in the space below.

+ 4) How long will it take the ladybug population to reach 200 if it is growing linearly?

+ 5) Suppose the ladybug population is growing exponentially. How many beetles can Tamara expect to find after 2, 3, and 4 months? Write the sequence. 6) What is the common ratio? 7) Now put the sequence into a table in the space below.

+ 8) How long will it take the ladybug population to reach 200 if it is growing exponentially? 9) Why does it take the ladybug population longer to reach 200 when it grows linearly?

+ 10) Graph both tables on the designated graphs provided below. Be sure to label your axes Linear Growth Exponential Growth

+ Homework Worksheet 5.5

+ Wednesday January 30

+ Warm Up - # 5 Homework 5.5

+ One Grain of Rice

+ Exponential Functions An exponential function is a function with the general form y = ab x a ≠ 0 and b > 0, and b ≠ 1

+ A and B A is your starting value B is growth factor X is time Y is the amount after time

+ Starting Value and Growth Factor Identify each starting value and the growth factor. 1. Y= 3(1/4) x 2. Y=.5(3) x 3. Y = (.85) x

+ Modeling Exponential Functions Suppose 20 rabbits are taken to an island. The rabbit population then triples every year. The function f(x) = 20 3 x where x is the number of years, models this situation. What does “a” represent in this problems? “b”? How many rabbits would there be after 2 years?

+ Modeling Exponential Functions Suppose a Zombie virus has infected 20 people at our school. The number of zombies doubles every day. Write an equation that models this. How many zombies are there after 5 days? If there are 1800 students at Knightdale, how long will it take for the Zombie virus to infect the whole school?

+ 3. A Bacteria culture doubles in size every hour. The culture starts at 150 cells. How many will there be after 24 hours? After 72 hours?

+ 4. A population of 2500 triples in size every year. What will the population be in 30 years?

+

+ Warm up Homework

+ Remember Exponential Functions An exponential function is a function with the general form y = ab x a ≠ 0 and b > 0, and b ≠ 1 A is your starting value B is growth factor X is time Y is the amount after time

+ Intervals of Time In an exponential equation when your growth factor happens over a special interval of time, we must divide our x by that interval. n is your interval of time

+ Modeling Exponential Functions Suppose a Zombie virus has infected 20 people at our school. The number of zombies doubles every 30 minutes. Write an equation that models this. How many zombies are there after 5 hours?

+ 4. A population of 2500 triples in size every 10 years. What will the population be in 30 years?

+ Friday February 1 st Compound Interest

+ Warm Up Homework

+ Review

+ Quiz

+ Compound Interest

+ Decimals as Percent's To Write a Decimal as a Percent: Move decimal place 2 places right. Ex:

+ Percent's as Decimals To Write a Percent as a Decimal: Move decimal place 2 places left. Ex: 45%63.3% 100.5%5.64%

+ Compound Interest Compound Interest is another type exponential function: Here P = starting amount R = rate (AS A DECIMAL!!!!) n = period T = time

+ Compound Interest Find the balance of a checking account that has $3,000 compounded annually at 14% for 4 years.

+ Compound Interest Find the balance of a checking account that has $500 compounded semiannually at 8% for 5 years.

+ Transformations

+ Warm Up Homework Compound Interest Practice Go over Review Sheet

+ Transformations Remember: Translations are moments of a function! Complete Worksheet

+ Transformation Sum Up y = 2 x-h + k + h left - h right - k down + k up

+ Part of an Exponential Graph Horizontal Asymptote: A horizontal line that the graph “flat lines” at Y-Intercept: Where the graph crosses the y-axis.

+ Identify Horizontal Asymptotes and y-intercept

+

+ Write an Equation if the Base = 2

+

+

+ Exponential Decay

+ Warm UP Homework Finish Translations

+ Drug Filtering Assume that your kidneys can filter out 25% of a drug in your blood every 4 hours. You take one 1000-milligram dose of the drug. Fill in the table showing the amount of the drug in your blood as a function of time. The first three data points are already completed. Round each value to the nearest milligram

+ Time since taking the drug (hrs) Amount of drug in your blood (mg)

+

+ 3. How many milligrams of the drug are in your blood after 2 days? 4. Will you ever completely remove the drug from your system? Explain your reasoning. 5. A blood test is able to detect the presence of the drug if there is at least 0.1 mg in your blood. How many days will it take before the test will come back negative? Explain your answer.

+ Initial (starting) value = a Growth or Decay Factor = b x is the variable, so we change that value based on what we are looking for! Remember that the growth or decay factor is related to how the quantities are changing. Growth: Doubling = 2, Tripling = 3. Decay: Losing half = Losing a third = Recall: y = ab x

+ Exponential Decay When b is between 0 and 1! Growth : b is greater than 1

+ If the rate of increase or decrease is a percent: we use a base of 1 + r for growth or 1 – r for decay

+ Ex 1. Suppose the depreciation of a car is 15% each year? A) Write a function to model the cost of a $25,000 car x years from now. B) How much is the car worth in 5 years?

+ Ex 2: Your parents increase your allowance by 20% each year. Suppose your current allowance is $40. A) Write a function to model the cost of your allowance x years from now. B) How much is your allowance the worth in 3 years?

+ Complete the 2 practice problems

+ Other Drug Filtering Problems 1. Assume that your kidneys can filter out 10% of a drug in your blood every 6 hours. You take one 200-milligram dose of the drug. Fill in the table showing the amount of the drug in your blood as a function of time. The first two data points are already completed. Round each value to the nearest milligram.

+ TIME SINCE TAKING THE DRUG (HR) AMOUNT OF DRUG IN YOUR BLOOD (MG)

+

+ A) How many milligrams of the drug are in your blood after 2 days? B) A blood test is able to detect the presence of the drug if there is at least 0.1 mg in your blood. How many days will it take before the test will come back negative? Explain your answer.

+ 2. Calculate the amount of drug remaining in the blood in the original lesson, but instead of taking just one dose of the drug, now take a new dose of 1000 mg every four hours. Assume the kidneys can still filter out 25% of the drug in your blood every four hours. Have students make a complete a table and graph of this situation.

+ TIME SINCE TAKING THE DRUG (HR) AMOUNT OF DRUG IN YOUR BLOOD (MG)

+

+ A) How do the results differ from the situation explored during the main lesson? Refer to the data table and graph to justify your response. B) How many milligrams of the drug are in your blood after 2 days?

+ HW 5.10

+ Growth VS Decay and Percent Growth and Decay

+ Exponential Functions Remember! An exponential function is a function with the general form y = ab x/n a ≠ 0 and b > 0, and b ≠ 1

+ A and B A Starting Value B is direction GrowthDecay b > 10 < b < 1

+ Y-Intercept and Growth vs. Decay Identify each y-intercept and whether it is a growth or decay. 1. Y= 3(1/4) x 2. Y=.5(3) x 3. Y = (.85) x 4. Y = 300(1.3) x 5. Y = 4500(.4) x 6. Y = 76(3/4) x

+ Increase and Decrease by percent Exponential Models can also be used to show an increase or decrease by a percentage.

+ Increase and Decrease by percent The rate of increase or decrease is a percent, we use a change factor/base of 1 + r or 1 – r. GrowthDecay. b > 10 < b < 1 Change factorChange Factor (1 + r) (1 - r)

+ Percent to Change Factor When something grows or decays by a percent, we have to add or subtract it from one to find b. 1. Increase of 25%2. increase of 130% 2. Decrease of 30% 4. Decrease of 80%

+ Growth Factor to Percent Find the percent increase or decease from the following exponential equations. 1. Y = 3(.5) x 2. Y = 2(2.3) x 3. Y = 0.5(1.25) x

+ Percent Increase and Decrease A dish has 212 bacteria in it. The population of bacteria will grow by 80% every day. How many bacteria will be present in 4 days?

+ Percent Increase and Decrease The house down the street has termites in the porch. The exterminator estimated that there are about 800,000 termites eating at the porch. He said that the treatment he put on the wood would kill 40% of the termites every day. How many termites will be eating at the porch in 3 days?