1 Decay studies of r-process nuclei Karl-Ludwig Kratz - Max-Planck-Institut für Chemie, Mainz, Germany - Department of Physics, Univ. of Notre Dame, USA.

Slides:



Advertisements
Similar presentations
Unit 3 Part 2 The Periodic Table ICP Mr. Patel SWHS.
Advertisements

LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
 -Spectroscopic Study of the r-Process Waiting-Point Nuclide 130 Cd Iris Dillmann Mainz- Maryland- ANL- Oslo- CERN/ ISOLDE-Collaboration Gull Lake October.
Copyright 2011 CreativeChemistryLessons.comCreativeChemistryLessons.comRemember! Metals LOSE Electrons (CATIONS)Metals LOSE Electrons (CATIONS) Non-Metals.
The Nature of Molecules
Periodic Table – Filling Order
Neutron (no charge) Hydrogen 1 Proton 1 Electron Oxygen 8 Protons 8 Neutrons 8 Electrons a. b. proton (positive charge) electron (negative charge) Copyright.
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
Binary Compounds Metals (variable oxidation) + Nonmetals.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
CH. 2 atomic models electronic configuration oxidation numbers
Nuclear-Physics far from Stability r-Process Nucleosynthesis
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Periodic Table of Elements. gold silver helium oxygen mercury hydrogen sodium nitrogen niobium neodymium chlorine carbon.
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Trends of the Periodic Table
Periodic Table Of Elements
Metals, Nonmetals, Metalloids
Ions Wednesday January 8, 2014
Clean Beams at ISOL Facilities GSI Workshop on Astrophysics and Nuclear Structure, January 15-21, 2006 in Hirschegg, Austria O.Arndt, H. Frånberg, C.Jost,
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
1/15 The r-Process in the High- Entropy-Wind of Type II SNe K. Farouqi Inst. für Kernchemie Univ. Mainz, Germany Frontiers Workshop August
Modern Periodic Table Objective:
Introduction to Mineralogy Dr. Tark Hamilton Chapter 3: Lecture 7 The Chemical Basis of Minerals (sizes, shapes & directions) Camosun College GEOS 250.
Electron Configuration Filling-Order of Electrons in an Atom.
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
1 Hydro gen 1 3 Li Lithi um 2 1 Na Sodiu m 3 1919 K Potas sium 4 3737 Rb Rubid ium 5 5 Cs Cesiu m 6 8787 Fr Franc ium 7 4 Be Beryl lium 1212 Mg Magne sium.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
Chapter 6 Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Teacher Notes This PPT was revised June 10, This PPT is a review on the atomic characteristics of the four main essential elements hydrogen, carbon,
C. Sifat Logam dan Non Logam serta Sifat Keperiodikan unsur Kimia.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
S2 SCIENCE CHEMICAL REACTIONS
Periodic Table of Elements
TOPIC 0C: Atomic Theory.
1.7 Trends in the Periodic Table
Introduction To Chemistry
R-PROCESS SIGNATURES IN METAL-POOR STARS
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Chemeketa Community College
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Masses of noble gases David Lunney CERN contact: Sarah Naimi, CSNSM
KS4 Chemistry The Periodic Table.
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Periodic Table of the Elements
ТАБЛИЦА Б. Е. ЛИПОВА «STRUCTURE OF ATOMIC NUCLEUS”
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
What Things Do I have To Memorize in AP Chem?
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Edexcel Topic 1: Key concepts in chemistry
Line Spectra and the Bohr Model
The Periodic Table Part I – Categories of Elements
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
The Periodic Table Part I – Categories of Elements
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

1 Decay studies of r-process nuclei Karl-Ludwig Kratz - Max-Planck-Institut für Chemie, Mainz, Germany - Department of Physics, Univ. of Notre Dame, USA T 1/2 PnPn SnSn nn  HRIBF 2006

2 scaled theoretical solar r-process scaled solar r-process Nb Zr Y Sr Mo Ru Rh Pd Ag Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Os Ir Pt Au Pb Th U Ga Ge Cd Sn Elemental abundances in UMP halo stars r-process observables Solar system isotopic abundances, N r,  “FUN-anomalies” in meteoritic samples isotopic composition Ca, Ti, Cr, Zr, Mo, Ru, Nd, Sm, Dy ↷ r-enhanced Historically, nuclear astrophysics has always been concerned with interpretation of the origin of the chemical elements from astrophysical and cosmochemical observations description in terms of specific nucleosynthesis processes (already B²FH, 1957).  [‰] ALLENDE INCLUSION EK Mass number CS abundances T 9 =1.35; n n = R-process observables, Bi

3 Nuclear-data needs for the classical r-process  nuclear masses S n -values  r-process path Q , S n -values  theoretical  -decay properties, n-capture rates   -decay properties  neutron capture rates  fission modes T 1/2  r-process progenitor abundances, N r,prog P n  smoothing N r,prog N r,final (N r,  )  RC +  DC  smoothing N r,prog during freeze-out SF,  df, n- and -induced fission  “fission (re-) cycling”; r-chronometers  -decay freeze-out  nuclear structure development - level systematics - “understanding”  -decay properties - short-range extrapolation into unknown regions

4 History and progress in measuring r -process nuclei Definition: r-process isotopes lying in the process path at freeze-out ↷ when r-process falls out of (n,  )-( ,n) equilibrium even-neutron isotopes ↷ “waiting points” important nuclear-physics property T 1/2 odd-neutron isotopes ↷ connecting the waiting points important nuclear-physics property S n   n.  In 1986 a new r-process astrophysics era started: at the ISOL facilities OSIRIS, TRISTAN and SC-ISOLDE T 1/2 of N=50 “waiting-point” isotope 80 Zn 50 (top of A  80 N r,  peak; “weak” r-process) T 1/2 of N=82 “waiting-point” isotope 130 Cd 82 (top of A  130 N r,  peak; “main” r-process) In 2006, altogether more than 50 r-process nuclei have been measured, which lie in the process path at freeze-out. These r-process isotopes range from 68 Fe to 139 Sb. The large majority of these exotic nuclei was identified at CERN/ISOLDE via the decay mode of  –delayed neutron emission.

5 What we knew already in K.-L. Kratz et al (Z. Physik A325; 1986) Exp. at old SC-ISOLDE with plasma ion-source quartz transfer line and  dn counting Problems: high background from -surface ionized 130 In, 130 Cs -molecular ions [ 40 Ca 90 Br] + Request: SELECTIVITY ! Shell-model (QRPA; Nilsson/BCS) prediction 1.0 T 1/2 (GT) = 0.3 s g 7/2,  g 9/2 Q  = 8.0 MeV IKMz – 155R(1986) T 1/2 = 230 ms T 1/2 = (195 ± 35) ms

6 The r-process “waiting-point“ nucleus 130 Cd QQ QP 4QP J  =1 + { g 7/2,  g 9/2 } SnSn T 1/2, Q , E(1 + ), I  (1 + ), log ft obtain a physically consistent picture! “free choice” of combinations : low E(1 + ) with low Q  high E(1 + ) with low Q  low E(1 + ) with high Q  high E(1 + ) with high Q  T 1/2 (GT) 233 ms 1130 ms 76 ms 246 ms (log ft=4.1)

7 Ag CdIn Cs Sn SbTeIXe Improvements since 1993 at PS-Booster ISOLDE Fast UC x target Neutron converter Laser ion-source Hyperfine splitting Isobar separation Repeller Chemical separation Multi-coincidence setup Request: Selectivity ! >10 5 the Ag “needle” in the Cs “haystack” Why ? How?

8 Request: Selectivity ! Laser ion-source (RILIS) Chemically selective, three-step laser ionisation of Cd into continuum 130 Cd 1669 keV 130 Cd 1732 keV Laser ON Laser OFF 130 Sb 1749 keV Energy [keV]  -singles spectrum Laser ON Laser OFF Comparison of Laser ON to Laser OFF spectra Properties of the laser system: Efficiency ≈ 10% Selectivity ≈ s 2 1 S 0 5s 5p 1 P 1 5s 5d 1 D nm nm 228.8nm Cd

9 Mass scan at HRS (ISOLDE) in 2002; efficiency corrected in reality, „on a good day…“  M/M ≈ 1/4000 DM/M=7.5*10 -5 HRS design  ≥ 1/10 4 Request: Selectivity ! Isobar separation In Cs Cd Cd In with HRS !

10 Request: Selectivity ! Chemistry in the transfer line between target and ion-source ↷ thermochromatography Deposition of Zn, Rb, Ag, In, Cd and Cs in a quartz tube with a temperature gradient  separation Cd, from Cs, In Prototype UC x target at CERN/ISOLDE with temperature-controlled quartz transfer-line  Oct Diploma thesis C. Jost (2005)

11 Surprises high [ g 7/2  g 9/2 ] 1 + state weakening of the g 7/2 -  g 9/2 residual interaction high Q  -value 130 In 81 OXBASH (B.A. Brown, Oct. 2003) (old) (new) reduction of the TBME (1+) by 800 keV Full spectroscopy 130 Cd decay

Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Z N Sb Te I Xe Cs Ba Snapshots: r-process paths for different neutron densities heaviest isotopes with measured T 1/2 g 9/2 d 5/2 s 1/2 g 7/2 d 3/2 h 11/2 g 9/2 p 1/2 p 3/2 f 5/2 f 7/2

Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Z N Sb Te I Xe Cs Ba R-process path for n n =10 20 „waiting-point“ isotopes at n n =10 20 freeze-out n n =10 20

Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Z N Sb Te I Xe Cs Ba „waiting-point“ isotopes at n n =10 23 freeze-out R-process paths for n n =10 20 and (T 1/2 exp. : 28 Ni – 31 Ga, 36 Kr, 37 Rb, 47 Ag – 51 Sb) n n =10 23 n n =10 20

Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Z N Sb Te I Xe Cs Ba (T 1/2 exp. : 28 Ni, 29 Cu, 47 Ag – 50 Sn) boulevard R-process boulevard for n n =10 20, and „waiting-point“ isotopes at n n =10 26 freeze-out n n =10 23 n n =10 26 n n =10 20

16... resulting from new experimental and theoretical nuclear structure information: better understanding of shape of and matter flow through the major r-process bottle-neck at the A  130 N r,  peak no justification to question waiting-point concept (Langanke et al., PRL 83, 199; Nucl. Phys. News 10, 2000) no need to request sizeable effects from -induced reactions (Qian et al., PRC 55, 1997) Astrophysical consequences  r-process abundances in the Solar System and in UMP Halo stars......are governed by nuclear structure! Nuclear masses from AMDC, 2003 ETFSI-Q Normalized to N r,  ( 130 Te) Longer T 1/2 ! „short“ T 1/2 „long“ T 1/2

17 Abundance clues and constraints Observations versus calculations - solar system - UMP halo stars Conditions for „main“ and „weak“ r-process - n-densities - entropies Split between the two r-processes I (Wasserburg et al.) - below N=82 R-process chronometric pairs - Th/Eu, Th/U - new: Th/Hf Ages of UMP stars, Galaxy and Universe Suggestions on r-process sites Galactic chemical evolution (Un-) importance of fission recycling

18 Conclusion nuclear-physics data for explosive nucleosynthesis calculations still unsatisfactory !  better global models for all nuclear shapes (spherical, prolate, oblate, triaxial, tetrahedral,…) and all nuclear types (even-even, odd-particle, odd-odd)  more measurements masses ! gross  -decay properties level systematics full spectroscopy of selected key“ waiting-point isotopes Despite impressive experimental and theoretical progress, situation of with sufficiently large SP model space,