Novel high-k materials Can we nominate candidates for the 22 and the 16 nm nodes? Olof Engstrom Chalmers University of Technology Paul Hurley Tyndall National.

Slides:



Advertisements
Similar presentations
UTA Noise and Reliability Laboratory 1 Noise Modeling at Quantum Level for Multi- Stack Gate Dielectric MOSFETs. Zeynep Çelik-Butler Industrial Liaisons:
Advertisements

Derek Wright Monday, March 7th, 2005
Nanostructures Research Group Center for Solid State Electronics Research Quantum corrected full-band Cellular Monte Carlo simulation of AlGaN/GaN HEMTs.
Techniques of tuning the flatband voltage of metal/high-k gate-stack Name: TANG Gaofei Student ID: The Hong Kong University of Science and Technology.
Simulations of sub-100nm strained Si MOSFETs with high- gate stacks
High-K Dielectrics The Future of Silicon Transistors
Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Measurements of the E-field Breakdown.
School of Electrical and Electronic Engineering Queen’s University Belfast, N.Ireland Course Tutor Dr R E Hurley Northern Ireland Semiconductor Research.
Jaya Parulekar, Illinois Institute of Technology Sathees Selvaraj, University of Illinois at Chicago Christos Takoudis, University of Illinois at Chicago.
Radiation damage in SiO2/SiC interfaces
Carrier mobility enhancement in strained silicon germanium channels
Spring 2007EE130 Lecture 29, Slide 1 Lecture #29 ANNOUNCEMENTS Reminder: Quiz #4 on Wednesday 4/4 No Office Hour or Coffee Hour on Wednesday Tsu-Jae will.
Spring 2007EE130 Lecture 33, Slide 1 Lecture #33 OUTLINE The MOS Capacitor: C-V examples Impact of oxide charges Reading: Chapter 18.1, 18.2.
Xlab.me.berkeley.edu Xlab Confidential – Internal Only EE235 Carbon Nanotube FET Volker Sorger.
Spring 2007EE130 Lecture 34, Slide 1 Lecture #34 OUTLINE The MOS Capacitor: MOS non-idealities (cont.) V T adjustment Reading: Chapter 18.3.
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
Mobility Chapter 8 Kimmo Ojanperä S , Postgraduate Course in Electron Physics I.
Tufts Lithium-ion Thin Film Rechargeable Battery.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler.
Reliability of ZrO 2 films grown by atomic layer deposition D. Caputo, F. Irrera, S. Salerno Rome Univ. “La Sapienza”, Dept. Electronic Eng. via Eudossiana.
Properties of HfO 2 Deposited on AlGaN/GaN Structures Using e-beam Technique V. Tokranov a, S. Oktyabrsky a, S.L. Rumyantsev b, M.S. Shur b, N. Pala b,c,
Capacitance-Voltage of Al 2 O 3 Gate Dielectric by ALD on Enhancement-mode InGaAs MOSFET Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, “Capacitance-voltage.
ECE 7366 Advanced Process Integration
Advanced Process Integration
Investigation of Performance Limits of Germanium DG-MOSFET Tony Low 1, Y. T. Hou 1, M. F. Li 1,2, Chunxiang Zhu 1, Albert Chin 3, G. Samudra 1, L. Chan.
指導教授:劉致為 博士 學生:魏潔瑩 台灣大學電子工程學研究所
MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of Wellington Andrew Preston Wellington, New.
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
1 Ultrathin Gate Dielectrics on SiGe/SiGeC Heterolayers By Siddheswar Maikap Department of Physics Indian Institute of Technology (IIT), Kharagpur India.
ULIS 2003-Udine Italy Evolution of Si-SiO 2 interface trap density under electrical stress in MOSFETs with ultrathin oxides F. Rahmoune and D. Bauza Institut.
Scaling of the performance of carbon nanotube transistors 1 Institute of Applied Physics, University of Hamburg, Germany 2 Novel Device Group, Intel Corporation,
11/13 Development of ferrite-based electronic-phase-change devices Tanaka lab. Tatsuya Hori.
Characterization of Nanoscale Dielectrics or What characterizes dielectrics needed for the 22 nm node? O. Engstrom 1, M. Lemme 2, P.Hurley 3 and S.Hall.
1 S.K. Dixit 1, 2, X.J. Zhou 3, R.D. Schrimpf 3, D.M. Fleetwood 3,4, S.T. Pantelides 4, G. Bersuker 5, R. Choi 5, and L.C. Feldman 1, 2, 4 1 Interdisciplinary.
Influence of carrier mobility and interface trap states on the transfer characteristics of organic thin film transistors. INFM A. Bolognesi, A. Di Carlo.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
MURI kick-off: 5/10/05 Total-Dose Response and Negative-Bias Temperature Instability (NBTI) D. M. Fleetwood Professor and Chair, EECS Dept. Vanderbilt.
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
IEE5328 Nanodevice Transport Theory
ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA Sokrates T. Pantelides Department of Physics and Astronomy, Vanderbilt University, Nashville, TN The.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Chunxiang Zhu 1, Hang Hu 1, Xiongfei Yu 1, SJ Kim 1, Albert Chin 2, M. F. Li 1,4, Byung Jin Cho 1, and D. L. Kwong 3 1 SNDL, Dept. of ECE, National Univ.
Ion Beam Analysis of the Composition and Structure of Thin Films
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1μm MOSFET’s with Epitaxial and δ-Doped Channels A. Asenov and S. Saini, IEEE.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 38 MOS capacitor Threshold Voltage Inversion: at V > V T (for NMOS), many electrons.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Atomic Layer Deposition - ALD
ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA Sokrates T. Pantelides Department of Physics and Astronomy, Vanderbilt University, Nashville, TN and.
June MURI Review1 Total Dose Response of HfO 2 /Dy 2 O 3 on Ge and Hf 0.6 Si 0.2 ON 0.2 on Si MOS Capacitors D. K. Chen, R. D. Schrimpf, D. M.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
EE130/230A Discussion 10 Peng Zheng.
ASIC-LOP/LSTP Roadmap Assumptions - Vdd: equals to the HP proposal of USA. But trend is different with each other. - Performance: 10%/year growth.
Corrosion resistant ALD coatings
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Contact Resistance Modeling in HEMT Devices
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Total Dose Response of HfSiON MOS Capacitors
Strained Silicon MOSFET
MOS Capacitor Basics Metal SiO2
Mechanical Stress Effect on Gate Tunneling Leakage of Ge MOS Capacitor
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
Temperature dependant transport behavior of Bismuth
Presentation transcript:

Novel high-k materials Can we nominate candidates for the 22 and the 16 nm nodes? Olof Engstrom Chalmers University of Technology Paul Hurley Tyndall National Institute Octavian Buiu University of Liverpool Max Lemme AMO

Outline Why high-k? Essential properties needed Why are rare-earth oxides interesting? Comparison between different candidates Finalists?

Bulk MOS: Oxide voltage vs gate voltage Oxide thickness= 10 [Å] k Silicon doping: cm -3 Oxide voltage [V] Gate voltage [v] M S qsqs EFEF V O

The k-value should be ”lagom” Mohapatra et al, IEEE Trans. Electron. Dev. 49, 826 (2002) F For L g = 70 nm SiO 2 k = 10 k = 25 k = 50

Essential properties EcEc EvEv k-values Energy offsets  E c and  E v Reactivity with silicon Hygroscopicity Structural stability Interface states Charge carrier traps

Metals of interest

Polarizability and k-value Clausius-Mosotti D. G. Schlom et al, Thin films and heterostructures for oxide electronics, (Springer, 2005), p. 31

Energy offset vs. k-value Borders for the 22 nm LSTP bulk node: A/cm 2 EOT=0.6 nm V ox = 1V (Target) Requires k  E ≈ 70 eV O. Engström, B. Raeissi, S. Hall, O. Buiu, M.C. Lemme, H.D.B. Gottlob, P.K. Hurley, K. Cherkaoui, SSE, 51, 622 (2007) LaLuO 3

Reactivity Lu 2 O 3 (ALD) Scham et al Topics in Appl. Phys. Vol. 106, p. 153 (Springer, 2007) La 2 O 3 (evap) Kim et al SSE 49, 825 (2005) Gd 2 O 3 (MBE) Czernohorsky et al APL 88, (2006) 550 C 950 C As grown

Reactivity Si + MO M + SiO 2 MSi + SiO 2 M + MSiO  G 1000C For Si + O  G 1000C < 0  G 1000C SiO 2 D. G. Schlom et al, Thin films and heterostructures for oxide electronics, (Springer, 2005), p. 31

Hygroscopicity K.Kakushima, K.Tsutsui, S-I. Ohmi, P.Ahmet V.R. Rao and H. Iwai in Rare earth oxide thin films ( Springer, 2007), p. 345 water + oxidehydroxide

Structural stability APL, 89, (2006) Example: LaLuO 3

Leakage Gd 2 O 3 [2], HfO 2 [1], ZrO 2 [1] HfGdO [3] Lu 2 O 3 [4] with epitaxial Lu 2 O 3 - silicate IL) [1] H. Iwai et al, Proc. IEDM, 2002 [2] H.D.B. Gottlob et al, IEEE Electron Dev. Lett. 27, 814 (2006) [3] S. Govindarajan et al, APL 91, (2007) [4] P. Darmawan et al, APL 91, (2007) [5] A. Ogawa et al Microel. Eng. 84, 1861 (2007) Leakage current [A/cm 2 ] EOT [nm] HfO 2 and ZrO 2 3 La 2 O 3 [1] HfO 2 [5] (with HfSiO IL)

Experimental C = f (V,freq.) Gd 2 O 3 ALD Gd 2 O 3 MBE B.Raeissi, J.Piscator, O.Engström, S.Hall, O.Buiu, M.C.Lemme, H.D.B.Gottlob, P.Hurley, K.Cerkaoui and H.J.Osten, Proc. ESSDERC, 2007, p 287 HfO 2 React. sputt.

LaSiO x /Si interface LaSiO x E-beam evap. LaSiO x P.K.Hurley, K.Cherkaoui, E.O’Connor, M.C.Lemme, H. D.B. Gottlob, M.Schmidt, S.Hall, Y.Lu, O.Buiu, B.Raeissi, J. Piscator and O.Engstrom, J. Electrochem. Soc., in press

D it for HfO 2, Gd 2 O 3 and LaSiO x P.K.Hurleya, K.Cherkaoui, E.O’Connor, M.C.Lemme, H. D.B. Gottlob, M.Schmidt, S.Hall, Y.Lu, O.Buiu, B.Raeissi, J. Piscator and O.Engstrom, J. Electrochem. Soc., in press

Final solution: The Nominees Nominees Too low k  E c,v Wild cards Exists only in Andromeda

Finalists Pr 2 O 3 La 2 O 3 Gd 2 O 3 LaLuO 3 HfO 2 ZrO 2 k x DE c k x DE v Low ReactivityHigh LowHigh Hygroscop.LowHigh Low Struct. stab.Low High Low

Conclusion there is a lot more work to do! Lantanum based oxides seem worth a bid but fortunately for academic people

Theoretical C=f(V,freq.) C-V D it = f(  G n ) log  n = f(  G n ) C [F] Gate voltage [V]  G n [eV] D it [m -2 eV -1 ]  n [m 2 ]

The concept of polarization F = V/d P/(3    F loc = F + P/(3    P = (1/V m )  c F loc    c [A 3 ]

Large  means sloppier material + -  spring constant/mass) 1/2 Si High-k oxide LO-phonon Remote phonon scattering Fischetti et al, PRB 90, 4587 (2001)