SOIL COLLOIDS The soil colloids are the most active portion of the soil and largely determine the physical and chemical properties of a soil. Inorganic.

Slides:



Advertisements
Similar presentations
CATION EXCHANGE CAPACITY
Advertisements

Cation Exchange Capacity in Soils
Class evaluations.
The Punic Wars –Case for Salt in Soils “After the third punic war, the Romans stormed the town and the army went from house to house slaughtering the inhabitants.
Interest Approach Collect samples of growing media. Some suggestions are water, sand, peat moss, gravel, garden soil, potting mix, etc. Have the students.
Soil Chemical Properties
Sorption of Anions Important because: Several nutrients and agricultural chemicals are negatively charged. –Nitrate, phosphate, sulfate, selenate,… Tropical,
Environmental Processes Fundamental processes in soil, atmospheric and aquatic systems 2.i Ion exchange.
One half of the world’s population, about 3 billion people on six continents, lives or works in buildings constructed of clay - The New York Times.
Soil Acidity and Nutrients
Chapter 4- Products of Weathering Several things can happen to products 1- removal of materials by leaching e.g., CaCO 3 2- reaction of materials, either.
Clay Types Study Guide Types of Colloids –crystalline silicate clays (covered by this guide) –non-crystalline silicate clays (p 314) –Fe & Al oxides (p.
Clay Mineralogy.
Unit 6: Soil Chemical Properties
LECTURE 10 Introduction to some chemical properties of soils : Factors affecting plant growth (2)
Soil Chemistry Chapter 5.
1 Duration = 15 mins.. SIVA Copyright© Elements of Earth km dia 8-35 km crust % by weight in crust O= 49.2 Si= 25.7 Al= 7.5 Fe= 4.7 Ca= 3.4.
How nutrients, soil particles and chemistry fit together
Weathering and Soils (ch.3): Week 5, Friday; September 26, 2014.
E NVIRONMENTAL CHEMISTRY E 12. water and soil. W ATER AND SOIL Solve problems relating to the removal of heavy- metal ions, phosphates and nitrates from.
Soil Colloids, the final frontier Measuring CEC; sorption concepts; environmental implications.
Cation Exchange Capacity
Chapter 2 continued Inorganic soil solids.
Calculating wet topsoil pile weight Calculate the moisture content (w): w = [(g water) / (g dry soil)] x 100 = % Calculate dry topsoil weight using Db.
Soil Mineralogy and Chemistry Lecture 4. Phyllosilicate Minerals.
Chapter 2 Inorganic Solids in Soil continued.
Chapter 2 Inorganic Solids in Soil
PKa concepts Ionization = the process in which ions are formed from neutral compounds; Dissociation = the separation of the ions of an electrovalent compound.
Visual comparison of common silicate clays
Mineral Weathering and Secondary Mineral Formation weathering: chemical alteration of minerals (in soils, involves water, gases, acids, etc). Parent material.
Lecture 12a Soil Chemistry / Soil pH Soil pH is the single most important chemical property of the soil (like soil texture is to the physical properties)
Lecture 11 Clay Minerals Clay and organic matter in the soil provide the negative absorptive sites or Cation Exchange Capacity (CEC) Clay can hold positive.
X-Ray Diffraction for Soils
Environmental chemistry
Organic Matter. 1.Aluminosilcates are composed of two fundamental units: silica tetrahedra and aluminum octahedra to form sheet-like structures. 2. Cation.
Cation Exchange Definition: substitution of ions in solution for those held by a mineral grain. Associated with many different types of materials found.
Sheet Silicates Abundant and common minerals throughout upper 20 km of crust Abundant and common minerals throughout upper 20 km of crust Felsic to intermediate.
©2002 Pearson Education, Inc. Upper Saddle River, New Jersey THE NATURE AND PROPERTIES OF SOILS, 13/e Nyle C. Brady and Ray R. Weil Chapter 8 The.
Soil Colloids Chapter 8. █Ca 2+ +2K +  Ca 2+ + █2K + These equilibria are complex, involving all exchangeable species. The above is an example.
How soils supply plant nutrients An Introduction to Soil Chemistry
PRESENTED BY AKHTAR MEHMOOD ROLL # DEPARTMENT OF BOTANY M.PHIL BOTANY FINAL SEMESTER.
Building Soil Minerals. EXPECTED ION CORRDINATION.
Chapter 10 - Soil Fertility. Essential Plant Nutrients - 14 are Mineral Based Macros - N, P, K, Ca, Mg, S Micros - B, Cu, Cl, Fe, Mn, Mo, Zn, Ni.
Quiz 5 - Answers 1.)a.)List the five master horizons for describing soil profiles. O, A, E, B, C(2) b.) What is an elluvial horizon? Horizon in which there.
What are the types of growing media used in floriculture production? The health and quality of horticultural crops rest largely with the growing medium.
Weathering -II.
SIFAT KOLOID TANAH & KTK SUMBER:
1. Medium for Plant growth  provides anchorage  ventilation, soil pores allow CO2, formed through root respiration escape to the atmosphere and O2 to.
Surface Chemistry. Topics 1.Soil Minerals 2.Soil Adsorption Phenomena 3.Interaction of Water – Clay Minerals 4.Inorganic and Organic Solute Adsorption.
Mineral Colloids Continued. Na + K + K + Na + K + K + K + Cation Exchange Na +
PART -III Analytical Methods for Metal Speciation in Water and Solids
Cation Exchange Definition: substitution of ions in solution for those held by a mineral grain. Associated with many different types of materials found.
Minerals Ionic Solids Types of bonds Covalentbonding e - s shared equally Ionic coulombic attraction between anion and cation e - s localized Ionic / covalent.
Reactions of Aluminosilcates
Soil Acidity and Review of Colloid Charge. Mineral Charge.
Soil Clay Minerals and CEC
Silicate Clays.
Soil Mineralogy and Chemistry Lecture 4. Phyllosilicate Minerals.
Soil colloids. CHEMICAL PROPERTIES OF SOIL: Soil Colloids cat ion Exchange organic matter / Organic carbon Carbon –Nitroge ratio Soil fertility Soil reaction.
Basic Soil Plant Relationships Fundamentals of Nutrient Management Training Course Dec. 14, 2005 Jim Gorman West Virginia University.
SOIL REACTIONS, SOIL ACIDITY SOIL ALKALINITY, CONDUCTIVITY, REDOX POTENTIAL.
SOIL FERTILITY.
INTRODUCTION TO SOIL CHEMISTRY Soil Chemistry is an important branch of soil science. It is fundamental to all soil processes that affect the use of soil.
Lecture 12 Clay Minerals Clay and organic matter in the soil provide the negative absorptive sites or Cation Exchange Capacity (CEC)
Soil Chemistry.
Soil Chemical Properties
Soil Science & Management, 4E
Basic Soil-Plant Relationships
Basic Soil-Plant Relationships
CATION EXCHANGE CAPACITY
Presentation transcript:

SOIL COLLOIDS The soil colloids are the most active portion of the soil and largely determine the physical and chemical properties of a soil. Inorganic colloids (clay minerals, hydrous oxides) usually make up the bulk of soil colloids. Colloids are particles less than 0.001 mm in size, and the clay fraction includes particles less than 0.002 mm in size. Therefore, all clay minerals are not strictly colloidal. The organic colloids include highly decomposed organic matter generally called humus. Organic colloids are more reactive chemically and generally have a greater influence on soil properties per unit weight than the inorganic colloids. Humus is amorphous and its chemical and physical characteristics are not well defined. Clay minerals are usually crystalline (although some are amorphous) and usually have a characteristic chemical and physical configuration. Both inorganic and organic colloids are intimately mixed with other soil solids. Thus, the bulk of the soil solids are essentially inert and the majority of the soil's physical and chemical character is a result of the colloids present.

Cation exchange One of the most important properties of colloids is their ability to adsorb, hold, and release ions. Colloids generally have a net negative charge as a result of their physical and chemical composition. This negative charge is balanced by thousands of cations. Thus, colloids can be viewed as huge anions surrounded by a swarm of rather loosely held cations. Water molecules are also adsorbed to colloid surfaces; they are present as part of the hydrated structure of the cations. The amount of water associated with a particular cation is important, because the effective radius of the cation changes with the amount of hydration, or associated water

In humid regions, the cations associated with the colloids are dominated by Ca+2, H+, and often A1+3, resulting in acidic soils. As the soil becomes more acid, H+ and Al+3 become more predominant. The cations Mg+2, K+, and Na+ are usually found in lesser amounts, while NH4+ may be present in considerable quantities if the soil has been recently fertilized with ammonium fertilizers. In semiarid and arid regions, Ca2+ usually dominated the cations, but Mg2+ and Na+ are often found in large quantities. H+ and A13+ are usually present only in small concentrations. Many of the other plant nutrient cations are found only in very small amounts as cations on colloidal surfaces. More often, they are found as chelates or in chemical combination. Such cations include Mn+2, Zn+2, Cu+2, Fe+2, and Fe+3 and generally make up only a small percent of the exchangeable cations. Anionic nutrients, such as NO3-, C1-, SO4-2, and PO4-3 are not held on the surfaces of colloids to any great extent. Instead, they exist as free anions in the soil solution or fixed within chemical compounds.

Cation exchange Cation exchange is the exchange of a cation in the soil solution for another on the surface of a colloid. Cation exchange is a phenomena which is constantly going in soils and is of great importance. Without some mechanism to temporarily hold cations in the soil, plants would be unable to obtain sufficient quantities of the essential nutrients to grow. Without cation exchange, the nutrients would simply be leached downward in the soil and lost. Cation exchange plays a role in other soil processes as well. Acidification is the process of exchanging basic cations, such as Ca+2, Mg+2, K+, and Na+, for acidic cations, such as H+ and A1+3. Liming acid soils results in a reversal of this process, H+ ions are exchanged for Ca+2 ions. If cationic fertilizer nutrients are not held by the soil colloids, the nutrients would be lost to percolation water

Flocculation and Dispersion Soils are generally in an aggregated state. Aggregation, however, is dependent on the soil colloids and the cations associated with them. Soil colloids can be in either a flocculated or dispersed state. The normal situation is for colloids to be in a flocculated state. Individual particles stick together to form aggregates of particles or floccules. Such aggregates do not move in the soil solution and form the basis for soil structure. When soil particles are dispersed, aggregates do not form, and each particle behaves as an individual. Without aggregation, water, air, and root movement in the soil is inhibited. Thus, dispersion is not a desirable characteristic of productive soils.

The type of cations present in the soil solution determines whether a soil is dispersed or flocculated. Sodium cations cause dispersion while calcium, magnesium, aluminum, and hydrogen ions promote flocculation. Because colloids are simply large anions, they attract cations in order to neutralize their negative charge. Flocculating cations sufficiently neutralize the negative charge, allowing colloids to adhere and flocculate. The attraction of particular cations to the negatively charged colloids is a function of two things, the hydrated size of the cation and the charge of the cation. These two factors combine to determine the charge density on the cation, in other words, the distribution of charge over the surface of the cation. For example, with the highly hydrated Na+ cation, the hydrated size of the cation is relatively large, while its charge is only +1. So, that +1 charge has to be distributed over a relatively large area. With such a large cation having such a low charge, the negative charge on the colloids is not sufficiently satisfied and the colloids actually repel one another, resulting in dispersion.

Shrinking and Swelling Soils shrink and swell as they dry and rewet. Shrinking and swelling is an important factor in the construction of bridges, roads, and buildings, because of the pressures exerted by swelling or expanding soils on the foundations of such structures. Shrinking and swelling is largely a function of the type of colloid present, particularly clay colloids. As water moves in and out of clay crystal lattices, they respond by expanding or contracting. Extreme expansion and contraction is exhibited by clays such as montmorillonite, which have expanding lattices. Clays with nonexpanding lattices, such as kaolinite and chlorite, have very little capacity to shrink and swell.

Colloidal Properties 1. Size - extremely small 2. Surface area - very large 3. Surface charge (a) most soils = electronegative charge dominates (b) results in ion (cation) adsorption

Types of Colloids 1. Layer silicate clays

2- Hydrous oxides of Fe and Al (a) highly weathered soils & coatings (b) some have structure, others poorly structured (c) examples: gibbsite, Al(OH)3; goethite, FeOOH 3-Allophane and other amorphous minerals

4. Organic colloids (a) highly charged (pH dependant) (b) phenolic and carboxyl OH groups

Adsorbed cations (a) arid region soils = "basic" cations Ca+2, Mg+2, K+, Na+ (b) humid region soils = "acidic" cations as well Ca+2, Mg+2, H+ and Al+3 (c) strength of adsorption Al+3> Ca+2 = Mg+2 > K+ = NH4+ > Na+

ساختمان کاني هاي اوليه : Oو Siبه عنوان سازند گان 75% وزن پوسته ي زمين اساس ساختاري کاني ها مي باشند. مجموعه ي 4اکسيژن و يک سيلسيم يک چهار وجهي بنام تتراهيدرون را به وجود مي آورند.

O Si SiO4-

O/Si= 4/1 O/Si= 2/1

C. Layer Silicate Clay Structure- basic building blocks 1. Tetrahedron - SiO4 Sharing of O or OH groups = sheets and unit layers (a) tetrahedral sheet                          

2. Octahedron - Al(OH)6 octahedral sheet  

Tetrahedral and octahedral sheets are often drawn as shown below

1:1 Type Minerals 1. Mostly, kaolinite    

Unit layers H-bonded together     è "fixed lattice type" no interlayer activity no shrink-swell only external surface 3. Well crystallized (a) little isomorphous substitution low cation adsorption (b) larger particle size (0.1 - 5 m m) - hexagonal shaped

Type Minerals 1. Expanding lattice (a) Smectite group (mostly, montmorillonite) 

    (b) Freely expanding water in interlayer = large shrink-swell adsorbed cations in interlayer - offset the isomorphous substitution large internal surface (c) Poorly crystallized small size isomorphous substitution = large cation adsorption

Vermiculite similar to smectites except Al+3 for Si+4 in tetrahedral layer interlayer ions are more structured (Mg+2 + H2O) limited expansion large cation adsorption

Non-expanding lattice (a) Fine-grained micas or illite Al+3 and K+ substitute for Si+4 (tetrahedral sheet) u weathering at edges = release of K+ very limited expansion medium cation adsorption limited internal surface properties between kaolinite and vermiculite

u Mg-octahedral sheet replace K+ of illite Chlorites u Mg-octahedral sheet replace K+ of illite u properties similar to illite

Summary of Properties Surface Area (m2/g) Interlayer Cation Size (mm)   Surface Area (m2/g) Interlayer Cation Size (mm) External Internal Spacing (nm) Sorption Kaolinite 0.1-5.0 10-50 - 0.7 5-15 Smectite <1.0 70-150 500-700 1.0-2.0 85-110 Vermiculite 0.1- 5.0 50-100 450-600 1.0-1.4 100-120 Illite 0.1-2.0 5-100 1.0 15-40 Humus coatings 100-300

Clay Genesis and Distribution 1. Stages of weathering (a) alkali metals and alkaline earths dissolve (Na+, K+, Ca+2, Mg+2) (b) Si dissolves and leaches (c) continual reforming of new clay minerals Clays reflect weathering processes Young, weakly weathered soils = fine-grained mica, chlorite, vermiculite Intermediate weathering = vermiculite, smectite, kaolinite Strong weathering = kaolinite, hydrous oxides

خدا نگهدار