An Autonomous Inexpensive Robust CO 2 Analyzer (AIRCOA) Britton Stephens, Andrew Watt, and Gordon Maclean National Center for Atmospheric Research, Boulder,

Slides:



Advertisements
Similar presentations
Technical Aspects of Automated Greenhouse Gas Monitoring Kevin Kahmark, Neville Millar, Sven Bohm, Iurii Shcherbak, and G. Philip Robertson Michigan State.
Advertisements

Mass Flow Controller. Function Delivers user specified flow rate of gas. Flow rate is mass flow rate (i.e. number of molecules per sec Mol/sec), not volume.
Atmospheric Oxygen in and above Forests Britton Stephens, National Center for Atmospheric Research, Boulder, Colorado, USA Harvard Forest, Massachusetts,
Operating Nitrox Systems 11 Presented by Nuvair. Operating Nitrox Systems2 Membrane systems produce nitrox efficiently Compressed air flows through the.
Real-time Environmental Data Verification and Presentation August 6 th, 2014 Kavitha B V Central Pollution Control Board, New Delhi.
Air Monitoring Presented By: Etech Environmental & Safety Solutions, Inc.
AOSC 634 Air Sampling and Analysis Lecture 1 Measurement Theory Performance Characteristics of instruments Nomenclature and static response Copyright Brock.
1 QUALITY MANAGEMENT, CALIBRATION, TESTING AND COMPARISON OF INSTRUMENTS AND OBSERVING SYSTEMS WMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL.
February 2002, D0 meetingAuguste Besson1 Argon purity measurement of the calorimeter Argon Test Cell (A.T.C.) –measures the equivalent O 2 pollution with.
1 May 6, 2009 C. Lu Continuously Monitoring the RPC Gas Mixture with a Gas Chromatograph C. Lu Princeton University.
Earth and Atmospheric Sciences EAS535 Atmospheric Measurements and Observations II EAS 535
1 VACUUM ATMOSPHERES Co NEW PRODUCT ANNOUNCEMENT November 28, 2001.
Picarro Cavity Ring Down Spectrometry (CRDS) for High-Precision Continuous Monitoring of Atmospheric CO 2 and CH 4 Dave Lowry, Rebecca Fisher, Mathias.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering NRP 3: Let’s get started.
1 May 6, 2009 C. Lu Continuously Monitoring the RPC Gas Mixture with a Gas Chromatograph C. Lu Princeton University.
PRELIMINARY TEST PLANS 6/30/2015 Detailed Design Review 1.
Development of a low-cost gas sensor network for atmospheric methane concentration monitoring Michael van den Bossche Nathan Rose Doug.
Gas Analyzer Theory of Operation
Athens 27 September 2007 The S.V.I.R.CO. Observatory (INAF/UNIROMA3 Collaboration): Present status Workshop on Neutron Monitors 'The present and the future.
The Fumigation Monitor Company Integrated Fumigation Monitoring &Web Based Data Acquisition Methyl Bromide & Alternatives Conference Surabaya, Indonesia.
AYSENUR BICER Dr. Hans Schuessler. Why scientists examine ocean water ?
Presented by: Mike Hamdan South Coast Air Quality Management District Diamond Bar, CA Presented at: The Tribal Air Monitoring Training, Pechanga Reservation,
Update on in-situ tower-based measurements INFLUX workshop Purdue University 8 August 2011.
1 isr Institute for Sustainable Resources CRICOS No J Automated Greenhouse Gas Measurement System.
Approach of a UK auditor Paul Mudway Mudway Health, Safety & Environment.
Slide 1 What happens when you measure CO 2 five different ways on a single aircraft: Intercomparison results from the HIPPO project Britton Stephens, Andrew.
Gaseous Pollutants mini-course TAMS Center February 2009 Creating a Test Atmosphere.
Frankfurt (Germany), 6-9 June 2011  Speaker Jean LAVALLÉE  Authors Janislaw TARNOWSKI, Jacques CÔTÉ, André GAUDREAU, Pierre GINGRAS, Mircea IORDANESCU.
Arsine Detection using Chemcassette ® Technology.
Calor 2002, march 2002Auguste Besson1 Argon purity measurement of the D0 calorimeter Auguste Besson (ISN - Grenoble) for the D0 collaboration 10.
Bloodhound™ Logging System Infrared™ Hydrocarbon Analyzer System 0-100% auto ranging Total gas with Chromatograph model- C1-C4 iso and C4 normal Accurate.
Instruments and Platforms for Measuring Atmospheric CO 2 Concentration Britton Stephens NCAR Atmospheric Technology Division.
Airborne Observations of Atmospheric O 2 and CO 2 on Regional to Global Scales Britton Stephens (NCAR, Boulder, USA and NIWA, Wellington, New Zealand)
1 Saxony-Anhalt EU Twinning RO 04/IB/EN/09 State Environmental Protection Agency Wolfgang GarcheWorkshop European Standards Requirements of.
This is the situation at the start of your experiment. The entire system is at vacuum, and the mercury is at the bottom part of the Toepler pump. From.
CO 2 and O 2 Concentration Measurements Britton Stephens, NCAR/ATD Peter Bakwin, NOAA/CMDL Global carbon cycle Regional scale CO 2 measurements Potential.
Active gas system status. S.Konovalov, K.Zhukov. Active gas system operation. S.Konovalov "Active gas system..."TRT Overview  Good design.
PRACTICAL SKILLS ON THE TOPIC. SAMPLING OF AIR AND WORKPLACE AIR FOR LABORATORY RESEARCH.
Regional Needs and Instrumentation for CO 2 Observations Britton Stephens, NCARASP Colloquium, June 11, 2007.
Precision and accuracy of in situ tower based carbon cycle concentration networks required for detection of the effects of extreme climate events on regional.
Measurements of CO 2 Molar Mixing Ratio by Infrared Absorption Spectroscopy C, mole fraction (μmole mole -1 = ppm) LI-COR analyzers measure absorbance.
Regional Needs and Instrumentation for CO 2 Observations Britton Stephens, NCARASP Colloquium, June 11, 2007.
EGA Technical World Leaders in Combustion Management Solutions Mk7 EGA.
Meteorological Observatory Lindenberg Results of the Measurement Strategy of the GCOS Reference Upper Air Network (GRUAN) Holger Vömel, GRUAN.
EGA Technical World Leaders in Combustion Management Solutions Mk7 EGA.
World Leaders in Combustion Management Solutions Module Gas Setup Introduction The Mk7 E.G.A Cell Status Further Information.
New Product Developments World Leaders in Combustion Management Solutions C.E.M.S., MCERTs & E.P.A. Exhaust Gas Analysers C.E.M.S., MCERTs.
Shipboard Technical Support (STS) Calibration Facility
New Product Developments World Leaders in Combustion Management Solutions C.E.M.S., MCERTs & E.P.A. Exhaust Gas Analysers C.E.M.S., MCERTs.
MECH1300 Basic Principles of Pneumatics Topics Absolute Pressure and Temperature Gas Laws Gas Flow Vacuum Pneumatic Systems Chapter 10.
Leak tests G. Apeldoorn, P. Vankov , NIKHEF.
1 Greenhouse Gas Monitoring Network Update Pat Vaca, Air Pollution Specialist
Chamber Quality Control Before the construction several checks are performed on:  Panels (cathode and pad PCB)  GEM foil Tests on assembled detector.
Transformer Gas Tester Agenda Application Historical Solutions RKI’s Solution Features & Benefits Marketing.
Lab Activities: Chamber Baking & Mixing Station Flushing Claudio Curtis Dan PPS meeting 22 June, 2011.
SYSTEM LEVEL DESIGN REVIEW P16318 Gaseous Mass Flow Rate Controller Luke McKean, Lianna Dicke, Selden Porter, Schuyler Witschi ?
Quality Management & Operations Support Branch Quality Assurance Section Presented By: Webster Tasat.
NCAR - Atmospheric Technology Division Reporting work by: Erik Miller (ATD) Junhong Wong (ATD) Ari Paukkunen et al. (Vaisala, OY) Funded by: ATD, Vaisala;
F-900 PORTABLE ETHYLENE ANALYZER INSTRUMENT TRAINING
Progress Report of NPLI Fluid Flow Measurement Standards Activity ( ) Shiv Kumar Jaiswal Senior Scientist Fluid Flow Measurement Standards (Apex.
Experimental Comparison among the Psychrometer and the Two-Pressure Humidity Generator and the Dew Point Hygrometer Speaker: Jinpeng Fan Authors: Xueli.
Testing.
Carbon Cycle Observations and Instrumentation
Carbon Cycle Observation Advances at NCAR
August 23, 2000 R.N. Dubois Dow Chemical
Half or more of US NEE may be in mountainous regions
Half or more of US NEE may be in mountainous regions
Atmospheric CO2 and O2 Observations and the Global Carbon Cycle
CO2 and O2 Concentration Measurements
Data science laboratory (DSLAB)
Presentation transcript:

An Autonomous Inexpensive Robust CO 2 Analyzer (AIRCOA) Britton Stephens, Andrew Watt, and Gordon Maclean National Center for Atmospheric Research, Boulder, Colorado, USA

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

NCAR CO 2 and O 2 /N 2 Calibration Facility

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

CO 2 signal averaged over 2.5 min. measurement cycle

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Calibration sequence

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Empirical pressure correction

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

SPL 9/4-9/18 NWR 9/18 Empirical temperature correction

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Drying system monitoring A change of 0.5% RH is approximately 300 ppm H 2 O, which would cause a dilution error of 0.1 ppm in CO 2

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Nafion absorption effect Flow pulled through Nafion went from 300 to 50 sccm at t = 30 sec

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Empirical flushing correction

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Automated (4- or 8-hourly) leak checks A positive trend of 0.3 kPa/min would be a leak rate of 0.1 sccm which if 100 ppm different would cause a 0.1 ppm bias

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

13 C bias test

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Three cylinders were in the oven and one (green dots) was not Regulator oven tests

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Regulator flushing tests

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Laboratory intercomparisons Field surveillance tanks Laboratory offsets less than 0.06 ppm (1-sigma = 0.12 ppm) Field differences from assigned values less than 0.15 ppm (1-sigma = 0.15 ppm)

Potential source of biasAIRCOA solution Relating to WMO CO 2 ScaleDedicated CO 2 and O 2 calibration transfer facility Short-term IRGA noiseAverage for 2 minutes to get better than 0.1 ppm precision Drift in IRGA sensitivity4-hourly 4-point calibrations and 30-minute 1-point calibrations IRGA pressure sensitivityAutomated 4-hourly pressure sensitivity measurements IRGA temperature sensitivity30-minute 1-point calibrations, temperature control at some sites Incomplete drying of airSlow enough flow (100 sccm), two 96” Nafion driers, downstream humidity sensor to verify performance Drying system altering CO 2 Continuous flows and pressures through Nafions and run surveillance gas through entire system Incomplete flushing of cell and dead volumes Fast enough flow (100 sccm), alternate calibration sequence low ‑ to- high / high-to-low to look for effects Leaks through fittings, solenoid valves, and pumps Automated 8-hourly positive pressure leak-down and 4-hourly ambient pressure leak-up checks Pressure broadening without ArUse calibration gases made with real air Fossil CO 2 in calibration gases and different field and lab 13 C sensitivities Laboratory tests limit current effect to 0.05 ppm, long-term plans to use cylinders with natural CO 2 Regulator temperature effectsTests suggest effect is negligible, but could be regulator dependent Regulator flushing effectsRepeat calibration tests suggest the effect is negligible Whole-system diagnostics and comparability verification Long-term surveillance tank analyzed every 8 hours, co-location with other programs, rotating cylinders, and laboratory comparisons Delay in diagnosis of errorsNear real-time data acquisition, processing, and dissemination

Automated web-based output