А.Курепин ИЯИ РАН Новые результаты и планы исследований столкновений релятивистских ядер ИТЭФ 24 ноября 2011 1.

Slides:



Advertisements
Similar presentations
PID v2 and v4 from Au+Au Collisions at √sNN = 200 GeV at RHIC
Advertisements

Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
TJH: ISMD 2005, 8/9-15 Kromeriz, Czech Republic TJH: 1 Experimental Results at RHIC T. Hallman Brookhaven National Laboratory ISMD Kromeriz, Czech Republic.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
Quark Matter 2006 ( ) Excitation functions of baryon anomaly and freeze-out properties at RHIC-PHENIX Tatsuya Chujo (University of Tsukuba) for.
Jet probes of nuclear collisions: From RHIC to LHC Dan Magestro, The Ohio State University Midwest Critical Mass October 21-22, 2005.
1Erice 2012, Roy A. Lacey, Stony Brook University.
Measurements of long-range angular correlation and identified particle v 2 in 200 GeV d+Au collisions from PHENIX Shengli Huang Vanderbilt University for.
Julia VelkovskaMoriond QCD, March 27, 2015 Geometry and Collective Behavior in Small Systems from PHENIX Julia Velkovska for the PHENIX Collaboration Moriond.
R. Lacey, SUNY Stony Brook PHENIX Measurements of Anisotropic Flow in Heavy-Ion Collisions at RHIC Energies 1 Nuclear Chemistry Group, SUNY Stony Brook,
ICPAQGP, Kolkata, February 2-6, 2015 Itzhak Tserruya PHENIX highlights.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
High-p T spectra and correlations from Cu+Cu and Au+Au collisions in STAR Marco van Leeuwen, LBNL for the STAR collaboration.
System size and beam energy dependence of azimuthal anisotropy from PHENIX Michael Issah Vanderbilt University for the PHENIX Collaboration QM2008, Jaipur,
High p T identified hadron anisotropic flow and Deuteron production in 200 GeV Au+Au Collisions Shengli Huang Vanderbilt University for the PHENIX Collaboration.
High p T identified charged hadron v 2 and v 4 in 200GeV AuAu collisions by the PHENIX experiment Shengli Huang Vanderbilt University for the PHENIX Collaboration.
RHIC R.K. CHOUDHURY BARC. Relativistic Heavy Ion Collider at Brookhaven National Laboratory (BNL), USA World’s First Heavy Ion Collider became.
ISMD31 / Sept. 4, 2001 Toru Sugitate / Hiroshima Univ. The 31 st International Symposium on Multiparticle Dynamics on 1-7, Sept in Datong, China.
QM2006 Shanghai, China 1 High-p T Identified Hadron Production in Au+Au and Cu+Cu Collisions at RHIC-PHENIX Masahiro Konno (Univ. of Tsukuba) for the PHENIX.
Hard vs. Soft Physics at RHIC - Insights from PHENIX l Why hard vs. soft? l Soft physics: thermal, flow effects l Hard processes at RHIC l Conclusion Barbara.
An experimental perspective on first jet measurements at LHC: Lessons from RHIC Dan Magestro, The Ohio State University ALICE-USA Collaboration Meeting.
Matter System Size and Energy Dependence of Strangeness Production Sevil Salur Yale University for the STAR Collaboration.
U N C L A S S I F I E D 7 Feb 2005 Studies of Hadronic Jets with the Two-Particle Azimuthal Correlations Method Paul Constantin.
Detail study of the medium created in Au+Au collisions with high p T probes by the PHENIX experiment at RHIC Takao Sakaguchi Brookhaven National Laboratory.
M. Oldenburg Strange Quark Matter 2006 — March 26–31, Los Angeles, California 1 Centrality Dependence of Azimuthal Anisotropy of Strange Hadrons in 200.
GLOBAL EVENT FEATURES 1. Charged multiplicity (central collisions) Quantitative Difference from RHIC – dN ch /d  ~ 1600 ± 76 (syst) on high side of expectations.
Recent results on Quark Gluon Plasma and Future Plans
Jet Physics in ALICE Mercedes López Noriega - CERN for the ALICE Collaboration Hot Quarks 2006 Villasimius, Sardinia - Italy.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Energy Scan of Hadron (  0 ) Suppression and Flow in Au+Au Collisions at PHENIX Norbert Novitzky for PHENIX collaboration University of Jyväskylä, Finland.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
Charged Particle Multiplicity and Transverse Energy in √s nn = 130 GeV Au+Au Collisions Klaus Reygers University of Münster, Germany for the PHENIX Collaboration.
ALICE Overview Ju Hwan Kang (Yonsei) Heavy Ion Meeting June 10, 2011 Korea University, Seoul, Korea.
First measurements in Pb—Pb collisions at  s NN =2.76 TeV with ALICE at the LHC M. Nicassio (University and INFN Bari) for the ALICE Collaboration Rencontres.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
C H I C Charm in Heavy Ion SPS 1.J/  – Suppression in A+A 2.CHIC – Physics motivations 3.CHIC – Experimental aspects 1F. Fleuret - LLR.
OPEN HEAVY FLAVORS 1. Heavy Flavor 2 Heavy quarks produced in the early stages of the collisions (high Q2)  effective probe of the high-density medium.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
1 Charged hadron production at large transverse momentum in d+Au and Au+Au collisions at  s=200 GeV Abstract. The suppression of hadron yields with high.
News from ALICE Jan PLUTA Heavy Ion Reaction Group (HIRG) Warsaw University of Technology February 22, XIII GDRE Workshop, SUBATECH, Nantes.
PHENIX results on centrality dependence of yields and correlations in d+Au collisions at √s NN =200GeV Takao Sakaguchi Brookhaven National Laboratory for.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Hadronic resonance production in Pb+Pb collisions from the ALICE experiment Anders Knospe on behalf of the ALICE Collaboration The University of Texas.
1 Probing dense matter at extremely high temperature Rudolph C. Hwa University of Oregon Jiao Tong University, Shanghai, China April 20, 2009.
Diagnosing energy loss: PHENIX results on high-p T hadron spectra Baldo Sahlmüller, University of Münster for the PHENIX collaboration.
Measurement of Azimuthal Anisotropy for High p T Charged Hadrons at RHIC-PHENIX The azimuthal anisotropy of particle production in non-central collisions.
Kirill Filimonov, ISMD 2002, Alushta 1 Kirill Filimonov Lawrence Berkeley National Laboratory Anisotropy and high p T hadrons in Au+Au collisions at RHIC.
Squaw Valley, Feb. 2013, Roy A. Lacey, Stony Brook University Take home message  The scaling (p T, ε, R, ∆L, etc) properties of azimuthal anisotropy.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
Intermediate pT results in STAR Camelia Mironov Kent State University 2004 RHIC & AGS Annual Users' Meeting Workshop on Strangeness and Exotica at RHIC.
Flow harmonics in ATLAS Sasha Milov for the ATLAS Collaboration.
BNL, Jan 7-9, 2013 Wei Li First two-particle correlation results in proton-lead collisions from CMS Wei Li (Rice University) for the CMS collaboration.
V 2 and v 4 centrality, p t and particle-type dependence in Au+Au collisions at RHIC Yuting Bai for the STAR Collaboration.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
Heavy Flavor Measurements at RHIC&LHC W. Xie (Purdue University, West Lafayette) W. Xie (Purdue University, West Lafayette) Open Heavy Flavor Workshop.
Yuting Bai (for the Collaboration) Anisotropic Flow and Ideal Hydrodynamic Limit International Conference on Strangeness in Quark Matter 2008 Oct ,
1 RIKEN Workshop, April , Roy A. Lacey, Stony Brook University Primary focus: Scaling properties of flow & Jet quenching.
Soft physics in PbPb at the LHC Hadron Collider Physics 2011 P. Kuijer ALICECMSATLAS Necessarily incomplete.
1 Joint meeting IPNO-LAL LUA9-AFTER Orsay, Novembre 2013 Roberta Arnaldi INFN Torino (Italy)
Review of ALICE Experiments
PHENIX Measurements of Azimuthal Anisotropy at RHIC
High-pT Identified Hadron Production in Au+Au and Cu+Cu Collisions
Experimental Studies of Quark Gluon Plasma at RHIC
p+p jet+jet
of Hadronization in Nuclei
Identified Charged Hadron Production at High pT
Introduction of Heavy Ion Physics at RHIC
ShinIchi Esumi, Univ. of Tsukuba
Masahiro Konno (Univ. of Tsukuba) for the PHENIX Collaboration Contact
Presentation transcript:

А.Курепин ИЯИ РАН Новые результаты и планы исследований столкновений релятивистских ядер ИТЭФ 24 ноября

Содержание 1.Некоторые результаты по Pb-Pb столкновениям при 2.76 Тэв/c на нуклон ( ALICE, CMS, ATLAS ) 1.Энергетическая зависимость рождения барионов (NA49, NA61, BES ) 2.Возможности измерения столкновения ядер на LHCb с фиксированными мишенями 4. Поиск новых направлений исследования 2

33

'Baryon anomaly':  /K 0 4 Baryon/Meson ratio still strongly enhanced x 3 compared to pp at 3 GeV - Enhancement slightly larger than at RHIC 200 GeV - Maximum shift very little in p T compared to RHIC despite large change in underlying spectra ! Ratio at Maximum RHIC  /K 0 x 3

Charged Particle R AA QM2011 J. Schukraft5 PLB 696 (2011) Extrapolated reference => large syst. error 5

Jet quenching via hadron suppression Phys. Lett. B 696 (2011) [22 citations] Ratio = #(particles observed in AA collision per N-N (binary) collision) #(particles observed per p-p collision) suppression 1.Strong depletion of high-pT hadrons in A-A collisions – parton energy loss (jet quenching) 2. Qualitatively new feature : evolution of R AA as a function of p T 3. New, much anticipated constraint for parton energy-loss models Central collisions Cross-section R AA 1 6

77

Particle production in Pb-Pb: Azimuthal anisotropy x y z Initial spatial anisotropy pypy pxpx Final momentum anisotropy Reaction plane defined by “soft” (low p T ) particles Elliptic flow INTERACTIONS ( hydrodynamics? ) Reaction plane x y z 8

Measure Properties of the Medium Created in Pb+Pb Collisions 1.Collective behavior observed in Pb-Pb collisions at LHC (+0.3 v 2 RHIC ) v 2 (p T ) similar to RHIC – almost ideal fluid at LHC ? 2. New input to the energy dependence of collective flow 3. Additional constraints on Eq-Of-State and transport properties PRL 105, (2010) [36 citations] Most extreme state of matter ever created in the lab … STAR at RHIC 9

Precision measurement of  /s: – current RHIC limit:  /S < (2-5) x 1/4  –  /S conjectured AdS/CFT limit is wrong –  /S > 1/4  => measure  –  /S ≈ 1/4  => quantum corrections which are O(10-30%) in AdS/CFT! 20% in v 2 ~ 1/4  need few % precision Precision: How ? – fix initial conditions (geometrical shape is model dependent, eg Glauber, CGC) – quantify flow fluctuations  (influence measured v 2, depending on method) – measure non-flow correlations  (eg jets) – improve theory precision (3D hydro, 'hadronic afterburner',...) – CERN, 2 Dec 2010 J. Schukraft 10 Azimuthal Flow: What next ? STAR at RHIC PRL 105, (2010) 10

11

12

Flow & 2 Particle Correlations 13 Almost any structure can be described with enough coefficients ! - But not if we impose factorization C(p T 1, p T 2)=v(p T 1)*v(p T 2) (or take coefficients from flow analysis). Correlations (|  |>0.8) can be described consistently with 'collective flow' hypothesis for p T < 3-4 GeV ( consistent with 'collectivity ') only partially or not at all for p T > 5 GeV 'away side jet' 2 )  ≈ coefficients from flow analysis coefficients from C(P T 1,P T 2) analysis

14

15

16

17

R CP e+e-e+e- J/  suppression: Compared to.. 18 Surprisingly (?) : less suppression than RHIC ! R CP (Alice/Atlas): suppression stronger at high p T ?? Caveats: - J/  (B) ≈  10% (LHCb) => R AA (prompt) lower by ≈ compare to Phenix e + e - ? => less difference, still significant - shadowing(LHC) > shadowing(RHIC) ? => R AA goes up ? - cold nuclear matter suppression ? Very intriguing, nevertheless.. Phenix  R AA ATLAS R CP shadowing range ?

19

20

21

22

The Horn Status before

The Horn STAR points from L. Kumar, QM 2011 STAR (BES) results confirm NA49 findings ! 24

The Horn, LHC point LHC point follows the established trend J. Schukraft, QM 2011 LHC point from: 25

The Horn 26 No structure in elementary collisions (too small system for canonical picture) No structure for negative particles (different sensitivity to baryon density) p+p (4π)

27 step-like pattern is confirmed no structure in elementary reactions similar structure seems to develop step-like pattern is confirmed The Step re Reduction of transverse expansion

28

29

30

31

. Fixed target charmonium production with proton and lead beams at LHC A.B.Kurepin, N.S.Topilskaya, M.B.Golubeva INR RAS, Moscow 1. Physics motivation. 2. Geometrical acceptances for J/  measurement at ALICE for PbPb interactions at  s= 5.5 TeV and pp interaction at  s = 14 TeV. 3. Evaluation of geometrical acceptances for PbPb and p-A fixed target J/  measurement by dimuon spectrometer of ALICE. 5. Luminosity and counting rate estimation. 6. Conclusions. New Opportunities Workshop…..N.S.Topilskaya, CERN – 13 May

. Colliders (RHIC,LHC) New Opportunities Workshop….. CERN – 13 May AA collisions Pb-Pb 2750 GeV/nucleon, √s = 71.8 GeV Fixed-target (LHC) – new opportunity – energy between SPS and RHIC p-A 7000 GeV, √s = GeV (5000 GeV, √s = 96.9 GeV) pA collisions AA collisions RHIC CuCu, AuAu √s =130 GeV, 200 GeV LHC PbPb √s = 5.5 TeV pA collisions RHIC pp, dAu √s =130 GeV, 200 GeV LHC pp, pA √s = 14 (10) TeV Fixed-target data (SPS, FNAL, HERA ) AA collisions SU, PbPb, InIn SPS: NA38, NA50, NA60 √s(GeV) pA collisions HERA-B, E866, NA50/51, NA38/3, NA60 √s(GeV) / /

Fixed target experiment Pb-Pb, T=2750 GeV,  s=71.8 GeV. J/  are generated at z=0 and outside of ITS at z=+50 cm. J/  are generated using p T -spectra with HERA and PHENIX form, consistent with COM model, but parameters are energy scaled: dN/dp T ~p T [1+(35  p T /256  ) 2 ] -6 with = 1.4, and using y-spectra as Gaussian with mean value y cm =0 and  =1.1 J/  are accepted in the rapidity range -2.5<η<-4.0 (-2.98<η<-4.14), and each of 2 muons in the degree range <θ<178 0 ( <θ< ) for generation J/  at z=0 (z=+50 cm).  z=0 I acc = 12.0% z=+50 cm I acc = 8.79% 34

Fixed target experiment pA, T=7000 GeV,  s=114.6 GeV. J/  are generated at z=0 and outside ITS at z=+50 cm. J/  are generated using p T -spectra with the same parametrization with energy scaled parameter: dN/dp T ~p T [1+(35  p T /256  ) 2 ] -6 where = 1.6, and using y-spectra as Gaussian with mean value y cm =0 and  =1.25.  z=0 I acc = 8.54% z=+50 cm I acc = 5.98% 35

Luminocity, cross sections(x F >0), counting rates System  s  nn  pA =  nn  A 0.92   B  pA L Rate (TeV) (µb) (µb) (%) (µb) (cm -2 s -1 ) (hour -1 ) (TeV) (µb) (µb) (%) (µb) (cm -2 s -1 ) (hour -1 ) pp ∙ pp RHIC ∙ pPb fixed ∙10 29( * ) 168 pPb fixed ∙ pPb NA  10 29( ** ) 535 PbPb fixed ∙10 27 (***) 547 (*) pPb fixed, 500 µ wire, protons/60 min, z=+50 cm (**) pPb NA50, 3  10 7 protons/s, Eur. Phys. J. C33(2004) 31 (***) PbPb cross section, 6.8∙10 8 ions/60 min 36

Выводы 1.На ионном пучке LHC получены новые результаты о взаимодействии ультрарелятивистских ядер, которые существенно дополняют данные, полученные на коллайдере RHIC 2.Однако конкретных указаний на качественно новые эффекты не обнаружено 3.Необходимо искать новые пути исследования: эксперименты при более низких энергиях расширение набора сталкивающихся ядер, которые вполне достижимы в ближайшее время 37

38

39

40

41

Study the onset of deconfinement Onset of Deconfinement: early stage hits transition line, observed signals: kink, horn, step T µBµB energy Kink Horn Step collision energy hadron production properties AGS SPS RHIC 42

Particle production in Pb-Pb: Azimuthal anisotropy x y z Initial spatial anisotropy pypy pxpx Final momentum anisotropy Reaction plane defined by “soft” (low p T ) particles Elliptic flow INTERACTIONS ( hydrodynamics? ) Reaction plane x y z 43

Measure Properties of the Medium Created in Pb+Pb Collisions 1.Collective behavior observed in Pb-Pb collisions at LHC (+0.3 v 2 RHIC ) v 2 (p T ) similar to RHIC – almost ideal fluid at LHC ? 2. New input to the energy dependence of collective flow 3. Additional constraints on Eq-Of-State and transport properties PRL 105, (2010) [36 citations] Most extreme state of matter ever created in the lab … STAR at RHIC 44

Jet quenching via hadron suppression Phys. Lett. B 696 (2011) [22 citations] Ratio = #(particles observed in AA collision per N-N (binary) collision) #(particles observed per p-p collision) suppression 1.Strong depletion of high-pT hadrons in A-A collisions – parton energy loss (jet quenching) 2. Qualitatively new feature : evolution of R AA as a function of p T 3. New, much anticipated constraint for parton energy-loss models Central collisions Cross-section R AA 1 45

Di-hadron Correlations in PbPb Two-particle correlations - conditional [per-trigger] yields and At Low-p T : Ridge Hydrodynamics, flow At High-p T : Quenching/suppression, broadening Powerful instrument to study system characteristics, including Jet Quenching (recoil jet suppression) Azimuthal Correlation ~ 180 deg Azimuthal Correlation ~ 180 deg Leading particle 46

Модель RELDIS: Relativistic ELectromagnetic DISsociation RELDIS опирается на модель фотоядерных реакций (ИЯИ, , А.С.Ильинов, И.А.Пшеничнов) Поглощение фотонов ядрами – многостадийный процесс: –поглощение фотона на внутриядерном нуклоне или на квазидейтонной паре (учитывается свыше 100 каналов при энергиях фотонов несколько ГэВ) –внутриядерный каскад образовавшихся адронов –статистический распад возбужденного остаточного ядра – модель SMM: конкуренция испарения нуклонов и кластеров - деление - мультифрагментация 47

Single and mutual EMD with ZDC SINGLE EMD MUTUAL EMD ZDC signal: Single EMD + Mutual EMD + Nuclear effects Mutual EMD event selection: ZNC && ZNA + ZDC time selection + (ZEM1<10 || ZEM2<10) estimated from simulations to reject nuclear events Data: 1n peak resolution consistent with RELDIS calculation Ratios: 1n/2n; 1n/3n; 2n/3n are under investigation 1n 1380 GeV 2n 48

The Dale Reduction of longitudinal expansion Petersen, Bleicher, nucl-th/ v1 No new points from STAR and ALICE (PID at mid–rapidity only) 49

50

Chiral Magnetic Effect ('strong parity violation') 51 B + - Same charge correlations positive Opposite charge correlations negative RHIC ≈ LHC somewhat unexpected should decrease with N ch may decrease with √s. ? + - B ? RHIC Local Parity Violation in strong magnetic Field ?

52

53

54