COMP 4640 Intelligent & Interactive Systems Cheryl Seals, Ph.D. Computer Science & Software Engineering Auburn University Lecture 2: Intelligent Agents.

Slides:



Advertisements
Similar presentations
Additional Topics ARTIFICIAL INTELLIGENCE
Advertisements

Agents & Mobile Agents.
Artificial Intelligent
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Intelligent Agents Russell and Norvig: 2
ICS-171: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2009.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2. Outline Agents and environments Agents and environments Rationality Rationality PEAS (Performance measure, Environment,
Agents and Intelligent Agents  An agent is anything that can be viewed as  perceiving its environment through sensors and  acting upon that environment.
Cooperating Intelligent Systems Intelligent Agents Chapter 2, AIMA.
CSE 471/598, CBS 598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Fall 2004.
AI CSC361: Intelligent Agents1 Intelligent Agents -1 CSC361.
ICS-271: 1 Intelligent Agents Chapter 2 ICS 279 Fall 09.
ICS-171: Notes 2: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2005.
Intelligent Agents Chapter 2 ICS 171, Fall 2005.
6/21/2015 LECTURE-3. 6/21/2015 OBJECTIVE OF TODAY’S LECTURE T oday we are going to study about details of Intelligent Agents. In which we discuss what.
Intelligent Agents Chapter 2.
ICS-171: Notes 2: 1 Intelligent Agents Chapter 2 ICS 171, spring 2007.
Rational Agents (Chapter 2)
Intelligent Agents: an Overview. 2 Definitions Rational behavior: to achieve a goal minimizing the cost and maximizing the satisfaction. Rational agent:
Introduction to Logic Programming WS2004/A.Polleres 1 Introduction to Artificial Intelligence MSc WS 2009 Intelligent Agents: Chapter 2.
Rational Agents (Chapter 2)
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
CPSC 7373: Artificial Intelligence Jiang Bian, Fall 2012 University of Arkansas at Little Rock.
Intelligent Agents. Software agents O Monday: O Overview video (Introduction to software agents) O Agents and environments O Rationality O Wednesday:
Artificial Intelligence
CHAPTER 2 Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
© Copyright 2008 STI INNSBRUCK Introduction to A rtificial I ntelligence MSc WS 2009 Intelligent Agents: Chapter.
Chapter 2 Intelligent Agents. Chapter 2 Intelligent Agents What is an agent ? An agent is anything that perceiving its environment through sensors and.
Intelligent Agents Chapter 2 Some slide credits to Hwee Tou Ng (Singapore)
Lection 3. Part 1 Chapter 2 of Russel S., Norvig P. Artificial Intelligence: Modern Approach.
Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Artificial Intelligence.
Intelligent Agents Chapter 2. CIS Intro to AI - Fall Outline  Brief Review  Agents and environments  Rationality  PEAS (Performance measure,
CSC 423 ARTIFICIAL INTELLIGENCE Intelligence Agents.
1/34 Intelligent Agents Chapter 2 Modified by Vali Derhami.
Chapter 2 Agents & Environments. © D. Weld, D. Fox 2 Outline Agents and environments Rationality PEAS specification Environment types Agent types.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
Chapter 2 Hande AKA. Outline Agents and Environments Rationality The Nature of Environments Agent Types.
CE An introduction to Artificial Intelligence CE Lecture 2: Intelligent Agents Ramin Halavati In which we discuss.
CS 8520: Artificial Intelligence Intelligent Agents Paula Matuszek Fall, 2008 Slides based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Instructional Objective  Define an agent  Define an Intelligent agent  Define a Rational agent  Discuss different types of environment  Explain classes.
INTELLIGENT AGENTS. Agents  An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Feng Zhiyong Tianjin University Fall  An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
1/23 Intelligent Agents Chapter 2 Modified by Vali Derhami.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we?
Chapter 2 Agents & Environments
CSC 9010 Spring Paula Matuszek Intelligent Agents Overview Slides based in part on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are in turn.
Intelligent Agents Chapter 2 Dewi Liliana. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 2 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types.
The Agent and Environment Presented By:sadaf Gulfam Roll No:15156 Section: E.
Web-Mining Agents Cooperating Agents for Information Retrieval Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Karsten Martiny.
Intelligent Agents By, JITHIN M J.
Intelligent Agents Chapter 2.
Web-Mining Agents Cooperating Agents for Information Retrieval
Intelligent Agents Chapter 2.
Hong Cheng SEG4560 Computational Intelligence for Decision Making Chapter 2: Intelligent Agents Hong Cheng
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Artificial Intelligence
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Presentation transcript:

COMP 4640 Intelligent & Interactive Systems Cheryl Seals, Ph.D. Computer Science & Software Engineering Auburn University Lecture 2: Intelligent Agents

1 Intelligent & Interactive Systems: Lecture2 Intelligent Agents An Agent is anything that perceives its environment via sensors and acts upon that environment via effectors. In this course, we will be interested in the design of rational agents, i.e. agents that do the right thing giving a sequence of percepts. In order to design rational agents (and also to be able to judge whether they are actually rational!) we must know: how to evaluate an agent’s success when to evaluate an agent’s success The how part is accomplished through the development of a performance measure. For the when part, it may be best to measure performance over an extended period of time; however, at times it may be advantageous to have intermediate performance measurements along the way.

2 Agents Chapter 2 AI by Russell & NorvigRussell

3 Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuatorsagent Human agent: eyes, ears, and other organs for sensors; hands, legs, mouth, and other body parts for actuators Robotic agent: cameras and infrared range finders for sensors; various motors for actuators

4 Agents and environments The agent function maps from percept histories to actions: [f: P*  A ] The agent program runs on the physical architecture to produce f agent = architecture + program

5 Vacuum-cleaner world Percepts: location and contents, e.g., [A,Dirty] Actions: Left, Right, Suck, NoOp  Robots examples (iRobot) Robots examples (iRobot)

6 Intelligent & Interactive Systems: Lecture2 For an agent, one can determine rational behavior based on: 1.the performance measure of the agent, 2.the percept sequence (this is the collection of all of the percepts received by the agent), 3.what the agent currently knows about the environment, and 4.the set of actions that the agent can presently perform.

7 Rational agents An agent should strive to "do the right thing", based on what it can perceive and the actions it can perform. The right action is the one that will cause the agent to be most successful Performance measure: An objective criterion for success of an agent's behavior E.g., performance measure of a vacuum-cleaner agent could be amount of dirt cleaned up, amount of time taken, amount of electricity consumed, amount of noise generated, etc.

8 Intelligent & Interactive Systems: Lecture2 Ideal Rational Agents An ideal rational agent is one that performs any action that is expected to maximize its performance measure given its percept sequence and its built-in knowledge. Ideal rational agents are formed by ideal mappings from percept sequences to actions An ideal rational agent may have some sense of autonomy. That is, it may be able to learn, adapt, and operate successfully in a variety of environments.

9 Intelligent & Interactive Systems: Lecture2 Structure of Intelligent Agents The objective of AI is the design and application of agent programs that implement mappings between percepts and actions An agent can be viewed as a program that is developed to run on a particular architecture (some computing device). The architecture: 1.makes percepts available, 2.runs the agent program, 3.sends actions to the effectors Types of Agent Programs  Intelligent systems are typically composed of a number of intelligent agents. Each agent interacts (directly or indirectly) with one or more aspects of an environment. This type of agent interaction is similar to what we see in sports, business, and other organizations that are composed of a number of different agents with different responsibilities working together for the common good.

10 Intelligent & Interactive Systems: Lecture2 There are a number of different agent programs; however, many can be classified as one of the following: 1.Simple Reflex (Reactive) Agents 2.Goal-based Agents 3.Model-based Agents 4.Utility-based Agents 5.Communication-based Agents

11 Simple reflex agents

12 Vacuum-cleaner world Percepts: location and contents, e.g., [A,Dirty] Actions: Left, Right, Suck, NoOp

13 Model-based reflex agents

14 Goal-based agents

15 Utility-based agents

16 Learning agents

17 Next Class Chapter 2 (continued) Agent Examples Agent Environments