Determining the dynamics of the ultracompact HII region (UCHII) Monoceros R2 A. Fuente Observatorio Astronómico Nacional (OAN)

Slides:



Advertisements
Similar presentations
Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Advertisements

Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
APN III 29 July 2003 William B. Latter SIRTF Science Center and California Institute of Technology.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Satoshi Yamamoto and Nobuyuki Kuboi Department of Physics The University of Tokyo Submillimeter-wave CI Line Survey in Molecular Clouds.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY Raquel R. Monje Darek C. Lis, Thomas Phillips, Paul F. Goldsmith Martin.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
The overall systematic trends in the kinematics of massive star forming regions Observations of HC 3 N* in hot cores Víctor M. Rivilla 41st Young European.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions II. Chemistry.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Molecular tracers in the Galaxy (and beyond…) Willem Baan 1 & Edo Loenen 1,2 1 ASTRON, 2 Kapteyn Astronomical Institute.
J. Cernicharo. “The interpreation H 2 O Observations” Water Vapour in Astrophysics Models and Observations FROM ISO, SWAS and ODIN TO HERSCHEL José Cernicharo.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
R. Meijerink, P. van der Werf, F. Israel and the HEXGAL team HERSCHEL OBSERVATIONS OF Edo Loenen, Leiden Observatory EXTRA GALACTIC STAR FORMATIONMESSIER.
Investigating the Chemical Complexity of Planetary Nebulae Emily Tenenbaum, Stefanie Milam, Lindsay Zack, Kiriaki Xilouris, Nick Woolf and Lucy Ziurys.
Large Scale CO Emission in the Orion Nebula Núria Marcelino (NRAO-CV) Olivier Berné (Leiden Obs, The Netherlands) José Cernicharo (CSIC/INTA, Spain) HST.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Hunt for Molecules in Local Universe Galaxies Santiago GARCIA-BURILLO Observatorio Astronómico Nacional (OAN)-Spain Hunt for Molecules, November 19-20,
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Cosmic Rays: Gas Phase Astrophysics and Astrochemistry Marco Spaans (Groningen) Rowin Meijerink (Leiden), Edo Loenen (Leiden), Paul van der Werf (Leiden),
“The Dusty and Molecular Universe” October 2004
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Testing grain-surface chemistry in massive hot-core regions and the laboratory (A&A, 465, 913 and A&A submitted) Suzanne Bisschop Jes Jørgensen, Ewine.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Molecular clouds in the center of M81 Viviana Casasola Observatoire de Paris-LERMA & Università di Padova, Dipartimento di Astronomia Scuola Nazionale.
Chapter 11 The Interstellar Medium
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Cosmic Masers Chris Phillips CSIRO / ATNF. What is a Maser? Microwave Amplification by Stimulated Emission of Radiation Microwave version of a LASER Occur.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Topic: “Ionized atomic lines in high-z galaxies” K. Kohno (IoA/RESCEU) Journal Club June 15 th, 2012 “Ionized nitrogen at high redshift”, Decarli et al.
Lecture 3 – High Mass Star Formation
The MALT90 survey of massive star forming regions
Signposts of massive star formation
Interferometric 3D observations of LIRGs
The Interstellar Medium
Presentation transcript:

Determining the dynamics of the ultracompact HII region (UCHII) Monoceros R2 A. Fuente Observatorio Astronómico Nacional (OAN)

Why to study Monoceros R2? Dynamically: It is the closest UC HII region (d=830pc) and the best target to investigate this evolutionary stage in the formation of massive stars From the chemical point of view: Excellent target to investigate the chemistry of dense (n>10 5 cm -3 ) photon-dissociation regions with high UV fluxes (G 0 = Habing field). Pattern for Xgal and protostellar disks Very simple geometry which allows detailed modeling

The latest stage in the formation of a massive star Massive pre-stellar core → High mass protostellar object (HMPO) → Hot core → UC HII region Figure adapted from van Dishoeck et al. (2011, PASP 123, 138) *

Lifetime Paradox Ultracompact HII regions are characterized for very small spatial scales (< 0.1 pc) and being embedded in the molecular cloud. With densities of a few 10 5 cm -3, typical of giant molecular clouds the UCHII is expected to expand and its lifetime as UCHII is of around one thousand of years. However the number of UCHII detected proves that the lifetime should be larger (“lifetime paradox”). Lifetime of UCHII should be around 10 5 yr.

Photodissociation Regions (PDRs) Orion Bar 10 4 Draine Field cluster O stars 450pc edge-on

Mon R2: a prototypical UC HII region 13 CO 2-1 C 18 O 2-1 FIRS 1 Mol. bar A small cluster of young stars (FIRS 1, 2, 3, 4, 5) is in the center of the HII region. The UC HII region is ionized by the more massive young B star FIRS 1 Observational study using the IRAM 30m telescope and Herschel (Mon R2 is one of the sources of the HSO Guarantee Time Key Project WADI (PI: Volker Ossenkopf)

CO + and HOC + in MonR2 (Rizzo et al. 2003, ApJ 577, L153) Detection of CO + and HOC + in the ionization front (IF) Abundance gradient between the IF and the Molecular Bar

C 2 H, c-C 3 H 2, some dynamics Rizzo et al. (2005, ApJ 634, 1133)

c-C 3 H 2 C1 C cm -3 > cm -3

Different excitation properties: C1 n(H 2 ) about cm -3 C2 n(H 2 ) always > cm -3 Different chemical properties C2 only detected in PDR tracers Probing the dense expanding layer around the UCHII region C1 C2

Spitzer data (PAHs and H 2 ) Berné et al. (2009), ApJ 706, L160 Bright, extended emission of the PAHs bands and H 2 rotational lines Layered structure expected in a PDR Different PDRs around UCHII region (different physical and chemical conditions)

G 0 and n H estimates from PAHs and H 2 H 2 rotational lines are thermalized for n>10 4 cm -3 The I 6.2 /I 11.3 ratio is tracing the UV field allow to determine the [PAH + ]/[PAH 0 ] ratio and the UV field (Galliano et al. 2008).

Mon R2: a prototypical UC HII region 13 CO 2-1 C 18 O 2-1 FIRS 1 Mol. bar Cuts in CH (536 GHz, includes HCO + 6-5), H 2 O (556GHz and 1113 GHz), CO 9-8, 13 CO 10-9, CII, CH + Pointed observations of OH +, H 3 O+, H 2 O +, NH, 13 CII, H 2 18 O

Massive star forming region

12 CO CO 10-9 o-H 2 O CII p-H 2 O o o-NH

Modeling water in Mon 2 Pilleri et al (in preparation) D=830 pc Compact NeII emission= 24" (diameter) Hole of molecular emission= 40" (diameter) N(H2)= cm -2 Size of the core= 2' (diameter) Our model: 1 st thin layer= 1mag with n= cm -3 2 nd dense layer= 14 mag with n= cm -3 3 rd low density layer= 50 mag with n= cm -3 V expansion =0.5 (R/Rout) -1 (from Fuente et al. 2010)

Non-local ALI model (Pilleri et al. 2011, in preparation) Spherical model Non local radiative transfer ( Cernicharo et al. 2006, ApJ 642, 940)

High velocity expanding layer T k >100 K X(o-H 2 O) ≈10 -7 Meudon PDR code v1.4.1 (Bourlot et al. 2006) Modeling water in Mon 2 Pilleri et al (in preparation) Low velocity molecular cloud T k <100 K X(o-H 2 O)≈ 10 -8

Absorption lines (OH +,H 2 O + ) OH+ absorption at redshifted and blueshifted velocities The only way to explain the redshifted absorption is to assume the existence of a collapsing outer low density envelope. Expansion Collapse

Absorption lines (OH +,H 2 O + ) [OH + ]/[H 2 O + ]=0.8 f(H 2 )=0.07 Similar to diffuse clouds (see Gerin et al. 2010)

Thin (1 mag) and dense ( cm -3 ) expanding layer Traced by high-J CO rotational lines and water (Herschel data). Reasonably well explained by gas phase PDR chemical models Thin (10mag) and dense (< 10 6 cm -3 ) molecular layer Traced by IRAM and Herschel data. Partially explained by gas phase PDR chemical models. Thick (50mag) and low density collapsing layer (10 4 cm -3 ) OH + absorption lines Conclusions

3mm IRAM spectral survey Ginard et al (in preparation) Three targetted positions: (i) IF (ii) Molecular Bar (iii) PAH peak 2 MHz -> 6 km/s

IF

First detection of SO + and C 4 H in Mon R2 IF: 23 species (+ CO + and HOC + ) Mol Bar: about 30 species Well known PDR tracers but also complex species common in warm star forming regions Chemical differences among the 3 positions. List of detected species

The fragmented ISM in the nucleus of M 82 A. Fuente Observatorio Astronómico Nacional (OAN)

M 82 M82 is one of the nearest and brightest starburst galaxies. Located at a distance of 3.9 Mpc, and with a luminosity of 3.7x L sun, it has been extensively studied at all wavelengths.

M Compared to other prototypical nearby starburst galaxies like NGC 253 and IC 342, M82 presents systematically low abundances of the molecules NH 3, CH 3 OH, CH 3 CN, HNCO, and SiO (Mauesberger & Henkel 1989, A&A 223, 79; Weiss et al. 2001, ApJ 554, L143). 2.- Wolfire et al. (1990, ApJ 358, 116) modeled the C II, Si II, and O I emission and estimateda UV field of G 0 =10 4 in units of the Habing field and a density of n >10 4 cm -3 for the atomic component. 3.- Suchkov et al. (1993, ApJ 413, 542) estimates a cosmic ray flux of s -1, 100 times higher than the Galactic value.

M 82 (García-Burillo et al. 2002, ApJ 575, L55) Izqda: Emisión de SiO (García-Burillo et al. 2001, ApJ 563, L27) superpuesta a la imagen de continuo a 4.8 GHz (Wills et al. 1999, MNRAS 309, 395). Dcha: Emisión de HCO superpuesta a la emisión de H13CO+ (A) y CO (García-Burillo et al., 2002, ApJ 575, L55; Mao et al. 2000, A&A 358,433)

A high N( H CO)/N(H 13 CO + ) ratio is an evidence for PDR. N (HCO)/N (H 13 CO + ) abundance ratios range from ∼ 50 (Horesehead), ∼ 30 (in the Orion bar) to ∼ 3 (in NGC 7023). N (HCO)/N (H 13 CO + ) ∼ 3.6 in M82, the nuclear disk of M82 can be viewed as a giant PDR of 650 pc. M 82 (García-Burillo et al. 2002, ApJ 575, L55)

CN/HCN ratio in M 82 (Fuente et al. 2005, ApJ 619, L155) The [CN]/[HCN] and [HCO + ]/[HOC + ] ratios in all the disk of M82 (650pc) similar to the Orion Bar. This comfirms that the nucleus of M82 is a giant PDR.

CO + and HOC + in M82 (Fuente et al. 2006, ApJ 641, L105) [CO + ]/[HCO + ] >0.04 are measured across the inner 650 pc of the nuclear disk of M82. [ HCO + ]/[HOC + ] ∼ 40

Preliminary model (Fuente et al. 2005, ApJ 619, L155) The low [HCO + ]/[HOC + ] ratio can only be explained if the nucleus of M82 is formed by small (r ~0.02– 0.2 pc) and dense (n ∼ a few times 10 4 –10 5 cm -3 ) clouds immersed in an intense UV field of 10 4 ( in units of the Habing field) and with an enhanced cosmic ray flux.

Detection of H 3 O + (van der Tak et al. 2008, ApJ 492, L675) Van der Tak et al. (2008) detected H 3 O + using the JCMT. They concluded in agreement with our results, that the H 3 O + abundance is consistent with that expected in a PDR with enhanced cosmic ray flux.

M 82: XDR or PDR? (Spaans & Meijerink 2007, ApJ 664, L23)

Interferometric observations of M 82 (Fuente et al. 2008, ApJ 492, L675) The HOC + emission comex from the galaxy disk like most molecular species. There is no spatial correlation between the HOC + abundance and the [HOC + ]/[HCO + ] ratio with the X ray flux.

Interferometric observations of M 82 (Fuente et al. 2008, ApJ 492, L675) We model our clouds using the updated Meudon code and plane clouds illuminated from the both sides.

Interferometric observations of M 82 (Fuente et al. 2008, ApJ 492, L675) We cannot fit the [CO + ]/[HCO + ] and [CN]/[HCN] ratios with a single cloud type. We can better fit the observations if we consider two types of clouds: (i) most of the mass(87%) is in small clouds of Av=5mag; (ii) a small percentage of the mass (13%) is in very large molecular clouds (50 mag).

Starburst evolution The differences between the chemistry of NGC 253, IC 342 and M82 can be understood as an indicator of different phases of starburst evolution, being NGC 253 in an earlier phase and M82, the more evolved one (García-Burillo et al., 2002, ApJ 575, L55, Aladro et al. 2011, A&A 525, 89). Aladro et al. 2011, A&A 525, 89

Other Xgal PDRs (M51 and M83) Stephane Guisard & Robert Gendler M 83 M 51 Tony & Daphne Hallas

Other Xgal PDRs (Kramer et al., 2005, A&A 441, 961) They compare the emission of the CI and CO rotational lines with the FIR lines of CII (157 µm), OI(63 μm) and NII (122μm) (ISO data) in terms of PDRs.

Other Xgal PDRs (Kramer et al., 2005, A&A 441, 961) The best fits to the latter ratios yield densities of 10 4 cm −3 and FUV fields of ∼ G0 = 20–30 times the average interstellar field. At the outer positions, the observed total infrared intensities are in agreement with the derived best fitting FUV intensities. The ratio of the two intensities lies at 4–5 at the nuclei, indicating the presence of other mechanisms heating the dust

The study of the physics and chemistry of PDRs is useful, even necessary, for the comprehension of the evolution of the ISM in our Galaxy and external galaxies. Conclusion