EE3561_Unit 8Al-Dhaifallah14351 EE 3561 : Computational Methods Unit 8 Solution of Ordinary Differential Equations Lesson 3: Midpoint and Heun’s Predictor.

Slides:



Advertisements
Similar presentations
Ordinary Differential Equations
Advertisements

CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L4&5 KFUPM.
Chapter 6 Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L8&9 KFUPM.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN DIFERENSIAL (lanjutan) Pertemuan 12 Matakuliah: METODE NUMERIK I Tahun: 2008.
Numeriska beräkningar i Naturvetenskap och Teknik 1. Numerical differentiation and quadrature Discrete differentiation and integration Trapezoidal and.
Computational Methods in Physics PHYS 3437
Ordinary Differential Equations
EE3561_Unit 6(c)AL-DHAIFALLAH14351 EE 3561 : Computational Methods Unit 6 Numerical Differentiation Dr. Mujahed AlDhaifallah ( Term 342)
PART 7 Ordinary Differential Equations ODEs
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Ordinary Differential Equations Equations which are.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 32 Ordinary Differential Equations.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 31 Ordinary Differential Equations.
Initial-Value Problems
Dr. Jie Zou PHY Chapter 9 Ordinary Differential Equations: Initial-Value Problems Lecture (II) 1 1 Besides the main textbook, also see Ref.: “Applied.
8-1 Chapter 8 Differential Equations An equation that defines a relationship between an unknown function and one or more of its derivatives is referred.
ECIV 301 Programming & Graphics Numerical Methods for Engineers REVIEW III.
Numerical Solutions of Ordinary Differential Equations
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
CISE301_Topic8L31 SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2,
Differential Equations and Boundary Value Problems
CISE301_Topic8L1KFUPM1 CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1.
Fin500J Topic 7Fall 2010 Olin Business School 1 Fin500J Mathematical Foundations in Finance Topic 7: Numerical Methods for Solving Ordinary Differential.
1 Chapter 6 Numerical Methods for Ordinary Differential Equations.
CSE 330 : Numerical Methods Lecture 17: Solution of Ordinary Differential Equations (a) Euler’s Method (b) Runge-Kutta Method Dr. S. M. Lutful Kabir Visiting.
PART 7 Ordinary Differential Equations ODEs
Boyce/DiPrima 9th ed, Ch 8.4: Multistep Methods Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard.
Computational Method in Chemical Engineering (TKK-2109)
An Over View of Runge-Kutta Fehlberg and Dormand and Prince Methods. Numerical Methods To Solve Initial Value Problems William Mize.
Integration of 3-body encounter. Figure taken from
Numerical Solutions of ODE
Scientific Computing Multi-Step and Predictor-Corrector Methods.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 7 - Chapter 25.
Numerical Analysis – Differential Equation
Please remember: When you me, do it to Please type “numerical-15” at the beginning of the subject line Do not reply to my gmail,
PHY 301: MATH AND NUM TECH Contents Chapter 10: Numerical Techniques I. Integration A.Intro B.Euler  Recall basic  Predictor-Corrector C. Runge-Kutta.
Dr. Mujahed AlDhaifallah ( Term 342)
Today’s class Ordinary Differential Equations Runge-Kutta Methods
Lecture 40 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
Ordinary Differential Equations
1/14  5.2 Euler’s Method Compute the approximations of y(t) at a set of ( usually equally-spaced ) mesh points a = t 0 < t 1
Lecture 39 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
This chapter is concerned with the problem in the form Chapter 6 focuses on how to find the numerical solutions of the given initial-value problems. Main.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 6 - Chapters 22 and 23.
CISE301_Topic8L71 CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2,
Ordinary Differential Equations (ODEs). Objectives of Topic  Solve Ordinary Differential Equations (ODEs).  Appreciate the importance of numerical methods.
Keywords (ordinary/partial) differencial equation ( 常 / 偏 ) 微分方程 difference equation 差分方程 initial-value problem 初值问题 convex 凸的 concave 凹的 perturbed problem.
Ordinary Differential Equations
Part 7 - Chapter 25.
Ordinary Differential Equations
525602:Advanced Numerical Methods for ME
Class Notes 18: Numerical Methods (1/2)
Numerical Solutions of Ordinary Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L4&5.
Class Notes 19: Numerical Methods (2/2)
Chapter 26.
Part 7 - Chapter 25.
Numerical Analysis Lecture 37.
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L2.
Numerical Analysis Lecture 38.
Numerical solution of first-order ordinary differential equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L6.
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L3 KFUPM.
Differential equations
Sec 23: Runge–Kutta Methods
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L7 KFUPM.
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L1 KFUPM.
Numerical solution of first-order ordinary differential equations 1. First order Runge-Kutta method (Euler’s method) Let’s start with the Taylor series.
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L6 KFUPM.
Presentation transcript:

EE3561_Unit 8Al-Dhaifallah14351 EE 3561 : Computational Methods Unit 8 Solution of Ordinary Differential Equations Lesson 3: Midpoint and Heun’s Predictor corrector Methods

EE3561_Unit 8Al-Dhaifallah14352 Lessons in Topic 8  Lesson 1: Introduction to ODE  Lesson 2: Taylor series methods  Lesson 3: Midpoint and Heun’s method  Lessons 4-5: Runge-Kutta methods  Lesson 6: Solving systems of ODE

EE3561_Unit 8Al-Dhaifallah14353 Learning Objectives of Lesson 3  To be able to solve first order differential equation using Midpoint Method  To be able to solve first order differential equation using Heun’s Predictor Corrector method

EE3561_Unit 8Al-Dhaifallah14354 Outlines of Lesson 3 Lesson 3: Midpoint and Heun’s Predictor-corrector methods Review Euler Method Heun’s Method Midpoint method

EE3561_Unit 8Al-Dhaifallah14355 Euler Method

EE3561_Unit 8Al-Dhaifallah14356 We have seen Taylor series method Euler method is simple but not accurate Higher order Taylor series methods are accurate but require calculating higher order derivatives analytically Introduction

EE3561_Unit 8Al-Dhaifallah14357  The methods proposed in this lesson have the general form  For the case of Euler  Different forms of will be used for the midpoint and Heun’s methods Introduction

EE3561_Unit 8Al-Dhaifallah14358 Midpoint Method

EE3561_Unit 8Al-Dhaifallah14359 Motivation  The midpoint can be summarized as Euler method is used to estimate the solution at the midpoint. The value of the rate function f(x,y) at the mid point is calculated This value is used to estimate y i+1.  Local Truncation error of order O(h 3 )  Comparable to Second order Taylor series method

EE3561_Unit 8Al-Dhaifallah Midpoint Method

EE3561_Unit 8Al-Dhaifallah Midpoint Method

EE3561_Unit 8Al-Dhaifallah Midpoint Method

EE3561_Unit 8Al-Dhaifallah Midpoint Method

EE3561_Unit 8Al-Dhaifallah Midpoint Method

EE3561_Unit 8Al-Dhaifallah Midpoint Method

EE3561_Unit 8Al-Dhaifallah Example 1

EE3561_Unit 8Al-Dhaifallah Example 1

EE3561_Unit 8Al-Dhaifallah Summary  The midpoint can be summarized as Euler method is used to estimate the solution at the midpoint. The value of the rate function f(x,y) at the mid point is calculated This value is used to estimate y i+1.  Local Truncation error of order O(h 3 )  Comparable to Second order Taylor series method

EE3561_Unit 8Al-Dhaifallah Heun’s Predictor Corrector

EE3561_Unit 8Al-Dhaifallah Heun’s Predictor Corrector Method

EE3561_Unit 8Al-Dhaifallah Heun’s Predictor Corrector (Prediction )

EE3561_Unit 8Al-Dhaifallah Heun’s Predictor Corrector (Prediction )

EE3561_Unit 8Al-Dhaifallah Heun’s Predictor Corrector (Prediction )

EE3561_Unit 8Al-Dhaifallah Heun’s Predictor Corrector

EE3561_Unit 8Al-Dhaifallah Heun’s Predictor Corrector

EE3561_Unit 8Al-Dhaifallah Example 2

EE3561_Unit 8Al-Dhaifallah Example 2

EE3561_Unit 8Al-Dhaifallah Summary  Euler, Midpoint and Heun’s methods are similar in the following sense: Different methods use different estimates of the slope  Both Midpoint and Heun’s methods are comparable in accuracy to second order Taylor series method.

EE3561_Unit 8Al-Dhaifallah Comparison Method Local truncation error Global truncation error

EE3561_Unit 8Al-Dhaifallah More in this Unit  Lessons 4-5: Runge-Kutta Methods  Lesson 6: Systems of High order ODE  Lesson 7: Multi-step methods  Lessons 8-9: Boundary Value Problems

EE3561_Unit 8Al-Dhaifallah EE 3561 : Computational Methods Topic 8 Solution of Ordinary Differential Equations Lesson 4: Runge-Kutta Methods

EE3561_Unit 8Al-Dhaifallah Lessons in Topic 8  Lesson 1: Introduction to ODE  Lesson 2: Taylor series methods  Lesson 3: Midpoint and Heun’s method  Lessons 4-5: Runge-Kutta methods  Lesson 6: Solving systems of ODE

EE3561_Unit 8Al-Dhaifallah Learning Objectives of Lesson 4  To understand the motivation for using Runge Kutta method and basic idea used in deriving them.  To Familiarize with Taylor series for functions of two variables  Use Runge Kutta of order 2 to solve ODE

EE3561_Unit 8Al-Dhaifallah Motivation  We seek accurate methods to solve ODE that does not require calculating high order derivatives.  The approach is to suggest a formula involving unknown coefficients then determine these coefficients to match as many terms of the Taylor series expansion

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method

EE3561_Unit 8Al-Dhaifallah Lecture Taylor Series in Two Variables The Taylor Series discussed in Chapter 4 is extended to the 2-independent variable case. This is used to prove RK formula

EE3561_Unit 8Al-Dhaifallah Taylor Series in One Variable Approximation Error

EE3561_Unit 8Al-Dhaifallah Taylor Series in One Variable another look

EE3561_Unit 8Al-Dhaifallah Definitions

EE3561_Unit 8Al-Dhaifallah Taylor Series Expansion

EE3561_Unit 8Al-Dhaifallah Taylor Series in Two Variables xx+h y y+k

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method Alternative Formula

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method Alternative Formula

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method Alternative Formulas

EE3561_Unit 8Al-Dhaifallah Runge-Kutta Method

EE3561_Unit 8Al-Dhaifallah Second order Runge-Kutta Method Example

EE3561_Unit 8Al-Dhaifallah Second order Runge-Kutta Method Example

EE3561_Unit 8Al-Dhaifallah Second order Runge-Kutta Method Example

EE3561_Unit 8Al-Dhaifallah143553

EE3561_Unit 8Al-Dhaifallah Summary  Runge Kutta methods generate accurate solution without the need to calculate high order derivatives.  Second order RK have local truncation error of order O(h 3 )  Fourth order RK have local truncation error of order O(h 5 )  N function evaluations are needed in N th order RK method.

EE3561_Unit 8Al-Dhaifallah More in this unit Lesson 5: Applications of Runge-Kutta Methods To solve first order differential equations.  Lessons 6: Solving Systems of high order ODE.