Mobility Weakens the Distinction between Multicast and Unicast Xinbing Wang Dept. of Electronic Engineering Shanghai Jiao Tong University Shanghai, China.

Slides:



Advertisements
Similar presentations
Fundamental Relationship between Node Density and Delay in Wireless Ad Hoc Networks with Unreliable Links Shizhen Zhao, Luoyi Fu, Xinbing Wang Department.
Advertisements

The Capacity of Wireless Networks
Capacity of wireless ad-hoc networks By Kumar Manvendra October 31,2002.
Mobility Increase the Capacity of Ad-hoc Wireless Network Matthias Gossglauser / David Tse Infocom 2001.
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
Chorus: Collision Resolution for Efficient Wireless Broadcast Xinyu Zhang, Kang G. Shin University of Michigan 1.
Queuing Network Models for Delay Analysis of Multihop Wireless Ad Hoc Networks Nabhendra Bisnik and Alhussein Abouzeid Rensselaer Polytechnic Institute.
Minimum Energy Mobile Wireless Networks IEEE JSAC 2001/10/18.
Secrecy Capacity Scaling of Large-Scale Cognitive Networks Yitao Chen 1, Jinbei Zhang 1, Xinbing Wang 1, Xiaohua Tian 1, Weijie Wu 1, Fan Fu 2, Chee Wei.
Routing in WSNs through analogies with electrostatics December 2005 L. Tzevelekas I. Stavrakakis.
Dynamic Tuning of the IEEE Protocol to Achieve a Theoretical Throughput Limit Frederico Calì, Marco Conti, and Enrico Gregori IEEE/ACM TRANSACTIONS.
The Capacity of Wireless Ad Hoc Networks
MotionCast: On the Capacity and Delay Tradeoffs Chenhui Hu 1, Xinbing Wang 1, Feng Wu 2 1 Institute of Wireless Communication Technology (IWCT) Shanghai.
Beneficial Caching in Mobile Ad Hoc Networks Bin Tang, Samir Das, Himanshu Gupta Computer Science Department Stony Brook University.
Performance Bounds for AF Multi-Hop Relaying over Nakagami Fading WCNC 2010 Gayan Amarasuriya, Chintha Tellambura and Masoud Ardakani {amarasur, chintha,
Peering in Infrastructure Ad hoc Networks Mentor : Linhai He Group : Matulya Bansal Sanjeev Kohli EE 228a Course Project.
On the Construction of Energy- Efficient Broadcast Tree with Hitch-hiking in Wireless Networks Source: 2004 International Performance Computing and Communications.
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Theory of Data Flow and Random Placement.
Mobility Increases Capacity In Ad-Hoc Wireless Networks Lecture 17 October 28, 2004 EENG 460a / CPSC 436 / ENAS 960 Networked Embedded Systems & Sensor.
Modeling Per-flow Throughput and Capturing Starvation in CSMA Multi-hop Wireless Networks M. Garetto, T. Salonidis, E. W. Knightly Rice University, Houston,
Maximizing the Lifetime of Wireless Sensor Networks through Optimal Single-Session Flow Routing Y.Thomas Hou, Yi Shi, Jianping Pan, Scott F.Midkiff Mobile.
CS401 presentation1 Effective Replica Allocation in Ad Hoc Networks for Improving Data Accessibility Takahiro Hara Presented by Mingsheng Peng (Proc. IEEE.
Wei Gao Joint work with Qinghua Li, Bo Zhao and Guohong Cao Department of Computer Science and Engineering The Pennsylvania State University Multicasting.
Mobile Ad hoc Networks COE 549 Delay and Capacity Tradeoffs II Tarek Sheltami KFUPM CCSE COE 8/6/20151.
Critical Transmission Range for Mobile Clustered Wireless Networks Qi Wang, Liang Liu, Xinbing Wang Department of Electronic Engineering Shanghai Jiao.
Optimal Multicast Capacity and Delay Tradeoffs in MANETs: A Global Perspective Yun Wang, Xiaoyu Chu, Xinbing Wang Department of Electronic Engineering.
Impact of Social Relation and Group Size in Multicast Ad Hoc Networks Yi Qin, Riheng Jia, Jinbei Zhang, Weijie Wu, Xinbing Wang Shanghai Jiao Tong University.
By: Gang Zhou Computer Science Department University of Virginia 1 A Game-Theoretic Framework for Congestion Control in General Topology Networks SYS793.
Fundamental Lower Bound for Node Buffer Size in Intermittently Connected Wireless Networks Yuanzhong Xu, Xinbing Wang Shanghai Jiao Tong University, China.
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2007 (TPDS 2007)
Mobility Increases the Connectivity of K-hop Clustered Wireless Networks Qingsi Wang, Xinbing Wang Department of Electronic Engineering Shanghai Jiao Tong.
On the Construction of Data Aggregation Tree with Minimum Energy Cost in Wireless Sensor Networks: NP-Completeness and Approximation Algorithms National.
Effect of Power Control in Forwarding Strategies for Wireless Ad-Hoc Networks Supervisor:- Prof. Swades De Presented By:- Aditya Kawatra 2004EE10313 Pratik.
EE360 PRESENTATION On “Mobility Increases the Capacity of Ad-hoc Wireless Networks” By Matthias Grossglauser, David Tse IEEE INFOCOM 2001 Chris Lee 02/07/2014.
Evolution-cast: Temporal Evolution in Wireless Social Networks and Its Impact on Capacity Luoyi Fu, Jinbei Zhang, Xinbing Wang Department of Electronic.
Improving Capacity and Flexibility of Wireless Mesh Networks by Interface Switching Yunxia Feng, Minglu Li and Min-You Wu Presented by: Yunxia Feng Dept.
Message-Passing for Wireless Scheduling: an Experimental Study Paolo Giaccone (Politecnico di Torino) Devavrat Shah (MIT) ICCCN 2010 – Zurich August 2.
Function Computation over Heterogeneous Wireless Sensor Networks Xuanyu Cao, Xinbing Wang, Songwu Lu Department of Electronic Engineering Shanghai Jiao.
Delay-Throughput Tradeoff with Correlated Mobility in Ad-Hoc Networks Shuochao Yao*, Xinbing Wang*, Xiaohua Tian* ‡, Qian Zhang † *Department of Electronic.
A Game Approach for Multi-Channel Allocation in Multi-Hop Wireless Networks Lin Gao, Xinbing Wang Dept. of Electronic Engineering Shanghai Jiao Tong University.
User Cooperation via Rateless Coding Mahyar Shirvanimoghaddam, Yonghui Li, and Branka Vucetic The University of Sydney, Australia IEEE GLOBECOM 2012 &
1 Multicast Algorithms for Multi- Channel Wireless Mesh Networks Guokai Zeng, Bo Wang, Yong Ding, Li Xiao, Matt Mutka Michigan State University ICNP 2007.
Convergecast with MIMO Luoyi Fu, Yi Qin, Xinbing Wang Department of Electronic Engineering Shanghai Jiao Tong University, China Xue Liu Department of Computer.
Scaling Laws for Cognitive Radio Network with Heterogeneous Mobile Secondary Users Yingzhe Li, Xinbing Wang, Xiaohua Tian Department of Electronic Engineering.
Load-Balancing Routing in Multichannel Hybrid Wireless Networks With Single Network Interface So, J.; Vaidya, N. H.; Vehicular Technology, IEEE Transactions.
Converge-Cast: On the Capacity and Delay Tradeoffs Xinbing Wang Luoyi Fu Xiaohua Tian Qiuyu Peng Xiaoying Gan Hui Yu Jing Liu Department of Electronic.
Downlink Scheduling With Economic Considerations to Future Wireless Networks Bader Al-Manthari, Nidal Nasser, and Hossam Hassanein IEEE Transactions on.
Dual-Region Location Management for Mobile Ad Hoc Networks Yinan Li, Ing-ray Chen, Ding-chau Wang Presented by Youyou Cao.
NTU IM Page 1 of 35 Modelling Data-Centric Routing in Wireless Sensor Networks IEEE INFOCOM Author: Bhaskar Krishnamachari Deborah Estrin Stephen.
On the Topology of Wireless Sensor Networks Sen Yang, Xinbing Wang, Luoyi Fu Department of Electronic Engineering, Shanghai Jiao Tong University, China.
MAIN RESULT: Depending on path loss and the scaling of area relative to number of nodes, a novel hybrid scheme is required to achieve capacity, where multihop.
Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project Competitive Scheduling in Wireless Networks with Correlated Channel State Ozan.
Efficient Computing k-Coverage Paths in Multihop Wireless Sensor Networks XuFei Mao, ShaoJie Tang, and Xiang-Yang Li Dept. of Computer Science, Illinois.
Capacity of Large Scale Wireless Networks with Directional Antenna and Delay Constraint Guanglin Zhang IWCT, SJTU 26 Sept, 2012 INC, CUHK 1.
1 A Multi-Rate Routing Protocol with Connection Entropy for MANETs Cao Trong Hieu, Young Cheol Bang, Jin Ho Kim, Young An Kim, and Choong Seon Hong Presenter:
Energy-Efficient Wake-Up Scheduling for Data Collection and Aggregation Yanwei Wu, Member, IEEE, Xiang-Yang Li, Senior Member, IEEE, YunHao Liu, Senior.
Multicast Scaling Laws with Hierarchical Cooperation Chenhui Hu, Xinbing Wang, Ding Nie, Jun Zhao Shanghai Jiao Tong University, China.
Mobility Increases the Connectivity of K-hop Clustered Wireless Networks Qingsi Wang, Xinbing Wang and Xiaojun Lin.
SERENA: SchEduling RoutEr Nodes Activity in wireless ad hoc and sensor networks Pascale Minet and Saoucene Mahfoudh INRIA, Rocquencourt Le Chesnay.
Near-Optimal Spectrum Allocation for Cognitive Radios: A Frequency-Time Auction Perspective Xinyu Wang Department of Electronic Engineering Shanghai.
Group Multicast Capacity in Large Scale Wireless Networks
Computing and Compressive Sensing in Wireless Sensor Networks
INFOCOM 2013 – Torino, Italy Content-centric wireless networks with limited buffers: when mobility hurts Giusi Alfano, Politecnico di Torino, Italy Michele.
The Capacity of Wireless Networks
Effectiveness of the 2-hop Routing Strategy in MANETS
Pradeep Kyasanur Nitin H. Vaidya Presented by Chen, Chun-cheng
Gaurav Sharma,Ravi Mazumdar,Ness Shroff
Survey on Coverage Problems in Wireless Sensor Networks
Riheng Jia, Jinbei Zhang, Xinbing Wang, Xiaohua Tian
Presentation transcript:

Mobility Weakens the Distinction between Multicast and Unicast Xinbing Wang Dept. of Electronic Engineering Shanghai Jiao Tong University Shanghai, China

2 Outline Introduction   Previous works & Motivation System model and main idea The impact of mobility on capacity for restricted mobility model The impact of mobility on delay for restricted mobility model Discussion Conclusion and future direction

Previous Works & Motivation What is multicast?   One source to m destinations 3 Data copy is necessary One copy may be sent to multiple destinations The number of flows is reduced comparing with unicast Xiangyang Li [1] [1] X. Li, “Multicast Capacity of Large Scale Wireless Ad Hoc Networks”, IEEE/ACM Trans. Networking, Vol.17, No. 3, pp , Jan (citation:234)

Previous Works & Motivation The multicast uses 4

Previous Works & Motivation The essential difference between multicast and unicast   The flow aggregation in multicast case (multiple flows with different destinations can be aggregated, and therefore only one flow is enough)   Due to the flow aggregation, the number of flows is reduced (11→5 in this example) by the multicast scheduling comparing with the multi-unicast case. 5

Previous Works & Motivation The mobility   Everything is going mobile   Currently, more than 70% of Facebook users access the service via a mobile device at least some of the time [2].   65% growth in mobile data traffic between Q and Q [3]. 6 [2] Christopher Penn, “State of Facebook: 70% use a mobile device to access Facebook”, [3] Ericsson, “Ericsson Mobility Report-June 2014”,

Previous Works & Motivation The study of mobility 7   A large number of studies focus on the mobility, including the modeling, measurement, scheduling design, performance analysis and etc. [4] P. Gupta and P. R. Kumar, "The capacity of wireless networks", IEEE Trans. Inform. Theory, vol. 46, no. 2, pp (citation:7678) [5] A. Gamal, J. Mammen, B. Prabhakar and D. Shah, “Optimal Throughput-Delay Scaling in Wireless Networks-Part I: The Fluid Model,” in IEEE Transactions on Information Theory, vol. 52, no. 6, pp , (citation:249) [6] Y. Tao, B. Ye, X. Wang, et al.,“Capacity and delay of heterogeneous wireless networks with correlated mobility,” in Wireless Communications and Networking Conference (WCNC) 2013, Shanghai, China, Apr [7] M. Garetto, E. Leonardi, “Restricted Mobility Improves DelayThroughput Tradeoffs in Mobile Ad Hoc Networks,” in IEEE Transactions on Information Theory, vol. 56, no. 10, pp , [8] C. Zhang, X. Zhu and Y. Fang, “On the improvement of scaling laws for large-scale MANETs with network coding,” in IEEE Journal on Selected Areas in Communications, vol. 27, no. 5, pp , 2009.

Previous Works & Motivation The impact of mobility(1)   The mobility helps deliver the packet 8

Previous Works & Motivation The impact of mobility(2)   The mobility may reduce the probability of flow aggregation 9

Previous Works & Motivation Our view on the impact of mobility   According to the mentioned impacts above, we can conclude that: The mobility helps deliver the packet → The mobility improves the capacity. The mobility may reduce the probability of flow aggregation → The mobility weakens the distinction between multicast and unicast. 10

Previous Works & Motivation Our view on the impact of mobility   The mobility improves the capacity 11 Static Random i.i.d. Mobility Static Random i.i.d. Mobility Unicast Multicast [9] Z. Wang, H. Sadjadpour, J.J. Garcia Luna Aceves, “A Unifying Perspective on the Capacity of Wireless Ad Hoc Networks,” in Proc. of IEEE INFOCOM 2008, Phoenix, AZ, USA, Apr [10] X. Wang, Q. Peng, Y. Li, “Cooperation Achieves Optimal Multicast Capacity-Delay Scaling in MANET,” in IEEE Transactions on Communications, vol. 60, no. 10, pp , [9] [10]

Previous Works & Motivation Our view on the impact of mobility   The mobility weakens the distinction between multicast and unicast 12 We verify this observation in our paper

13 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model The impact of mobility on delay for restricted mobility model Discussion Conclusion and future direction

System model The restricted mobility model 14 Each node i has a corresponding home point H i. Defining: The PDF of satisfies   This model includes many important mobility models such as static model, random i.i.d. mobility model etc.   The node speed is a decreasing function of α. Therefore, by adjusting the α, the impact of mobility on the network capacity can be well studied. where. Consequently, the can be further expressed as

System model The network model 15   Restricted mobility networks   Total number of nodes : n   Unicast, Multicast   Protocol model   Transmission range:   Bandwidth of each hop: constant   Destinations are randomly selected   Number of destinations is m

System model Capacity definition 16 Per-node Throughput: For a given scheme, we define the per-node throughput as the maximum achievable transmission rate. In t time slots, we assume that there are M(i,t) packets transmitted from node i to its destination(s). Firstly, the long term per-node throughput is defined as Afterwards, the per-node throughput of this model for a given scheme is defined by the maximum T(n) satisfying Per-node Capacity: For a given network, the per-node capacity of it is defined as where is a scheme for the network, is the set of all possible schemes, and is the per-node throughput of scheme.

System model Delay definition 17 Delay: For a given scheme, assuming that the source sends the packet to the network at time slot t s and the destination receives the packet at time slot t d, the delay is defined as the average value of t s - t d, i.e., It should be noted that the queuing delay at source is not considered here, which is the same as in many important works. Moreover, for wireless networks, we assume that the operation time spent in coding/decoding is negligible compared to the transmission time.

Main idea of this paper 18 Restricted mobility model Unicast Capacity, Delay Multicast Capacity, Delay Multicast gain (The capacity and delay gain of multicast comparing with unicast) More general case (The upper-bound and lower- bound of multicast gain)

Main contribution of this paper 19 [7] M. Garetto, E. Leonardi, “Restricted Mobility Improves DelayThroughput Tradeoffs in Mobile Ad Hoc Networks,” in IEEE Transactions on Information Theory, vol. 56, no. 10, pp , 2010.

20 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model   The capacity of unicast case   The capacity of multicast case   The multicast capacity gain The impact of mobility on delay for restricted mobility model Discussion Conclusion and future direction

21 The capacity of unicast case The throughput upper-bound In order to derive the per-node capacity, a contact graph is considered, in which the nodes are allocated at their home-points respectively. Moreover, we put an edge between any two-nodes, whose weight is defined as the probability that they happen to be within distance of each other. Considering a cut dividing the contact graph into two parts with the same size, there are nodes in each part in average. Therefore, the sum per-node throughput of these pairs is bounded by the sum weight of the edges across the cut.   Based on the contact graph

22 The capacity of unicast case The throughput upper-bound The sum weight of the edges across the cut can be expressed as where Further computation

23 The capacity of unicast case The throughput upper-bound After some mathematical manipulations, the throughput upper-bound can be obtained

24 The capacity of unicast case The optimal throughput achieving scheme The 2-hop relay scheme: the relay is selected from the nodes with home-point in the circle centered at the middle point of the source’s and destination’s home-points. The radius is 1/3 of the distance between the source’s and destination’s home-points.

25 The multi-hop relay scheme: the relays are selected in the cells that the line between source’s and destination’s home-points lines across. The capacity of unicast case The optimal throughput achieving scheme

26 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model   The capacity of unicast case   The capacity of multicast case   The multicast capacity gain The impact of mobility on delay for restricted mobility model Discussion Conclusion and future direction

27 The capacity of multicast case The throughput upper-bound Each source selects m destinations. The contact graph is also considered. Considering a circle cut dividing the contact graph into two parts as in the figure. The radius of the circle is. The numbers of packets transmitting into the circle and out of the circle are both. Therefore, the sum per-node throughput is bounded by the sum weight of the edges across the cut.   Based on the contact graph

28 The capacity of multicast case The throughput upper-bound Similar to the unicast case, the sum weight of the edges across the cut can be expressed as where Further computation where

29 After some mathematical manipulations, the throughput upper-bound can be obtained The capacity of multicast case The throughput upper-bound

30 The capacity of unicast case The optimal throughput achieving scheme   Case 1: α<2, similar to random i.i.d. mobility model.(2-hop, random relay selection)   Case 2:α≥2, Step1: build the Euclidean Minimum Spanning Tree (EMST) among the home points of the destinations and source. Step 2: Each edge of the EMST is treated as a unicast transmission.

31 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model   The capacity of unicast case   The capacity of multicast case   The multicast capacity gain The impact of mobility on delay for restricted mobility model Discussion Conclusion and future direction

32 The multicast capacity gain Definition of multicast capacity gain Multicast Capacity Gain: For a given network, we assume that the per-node capacity of multicast is. Moreover, if each node has m destinations, each multicast session can be treated as m unicast sessions (multi-unicast), and the corresponding sum per-node capacity is denoted as. Comparing the capacity of multicast and multi-unicast, we define the multicast capacity gain as The multicast capacity gain indicates the enhancement of per-node capacity by multicast transmission. Specially for the restricted mobility model, we use to represent the multicast capacity gain instead of since it is mainly related with and m.

33 The multicast capacity gain The multicast capacity gain of restricted mobility model According to the theoretical results of unicast and multicast, the multicast capacity gain can be expressed as

34 The multicast capacity gain The multicast capacity gain of restricted mobility model There is a gap when α=2 since there is a gap in the sum of p-series.

35 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model The impact of mobility on delay for restricted mobility model   The delay of unicast case   The delay of multicast case   The multicast delay gain Discussion Conclusion and future direction

36 The delay of unicast case Optimal delay achieving scheme: the flooding scheme In the restricted mobility model, the PDF of packet-holding nodes in the next time slot is determined by the packet-holding nodes in current time slot. Therefore, the transmission process in restricted mobility model can be treated as a Markov chain with 2 n-1 states. Moreover, there are 2 n-2 target states and 1 initial state. Hence, it is too complex to obtain the exact order of delay.

37   The upper-bound of the optimal delay is analyzed in this paper. In particular, we divide the transmissions into two groups, i.e., long distance transmission (LDT) and short distance transmission (SDT). LDT: the distance between the two transmission nodes’ home-points is. SDT: the distance between the two transmission nodes’ home-points is.   We calculate the following two kinds of delay: Delay 1: the delay of the packet transmitted from source to destination only through LDT. Delay 2: the delay of the packet transmitted from source to destination only through SDT. Consequently, the total delay of flooding scheme is upper-bounded by the minimum value of Delay 1 and 2. The delay of unicast case Optimal delay achieving scheme: the flooding scheme

38   Delay 1 (LDT delay) The event of LDT happens with probability For any nodes i and j, the event that i transmits a packet to j within two hops happens with probability, which is the same as in random i.i.d. mobility model in order sense. Thus, the Delay 1 equals to timing the delay of random i.i.d. mobility model. Hence, the Delay 1 satisfies The delay of unicast case Optimal delay achieving scheme: the flooding scheme

39   Delay 2 (SDT delay) To calculate Delay 1, we consider the condition that there is an region of radius centered at the home-point of source, and each node with home-point in holds a packet from i with probability. After time slots, there is a region of radius centered at the home-point of source, and each node with home-point in holds a packet from i with probability. This process is called region extension, which is illustrated in the figure, and is the region extension time. The delay of unicast case Optimal delay achieving scheme: the flooding scheme

40   Delay 2 (SDT delay) It should be noted that we ignore the transmissions out of as while as the relay to relay transmissions within the ring during the region extension. After some manipulations, the optimal relation between and is derived in our paper to minimize the number of ignored transmissions. The delay of unicast case Optimal delay achieving scheme: the flooding scheme

41   Delay 2 (SDT delay) It should be noted that the delay of case is mainly determined by Delay 1. The delay of unicast case Optimal delay achieving scheme: the flooding scheme

42   The upper-bound of the delay for flooding scheme (The minimum value of Delay 1 and Delay 2) The delay of unicast case Optimal delay achieving scheme: the flooding scheme

43 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model The impact of mobility on delay for restricted mobility model   The delay of unicast case   The delay of multicast case   The multicast delay gain Discussion Conclusion and future direction

44 The delay of multicast case Optimal delay achieving scheme: the flooding scheme To obtain the optimal delay for multicast case, we also adopt the flooding scheme under the same assumption that the transmission range is constant. When the flooding scheme is adopted, all of the nodes in the network will receive a replica of the packet from the source within the same time scale of the delay for unicast case. Therefore, for multicast case, the optimal delay is of the same order of unicast case, which is also proved in random i.i.d. mobility model in [10]. [10] X. Wang, Q. Peng, Y. Li, “Cooperation Achieves Optimal Multicast Capacity-Delay Scaling in MANET,” in IEEE Transactions on Communications, vol. 60, no. 10, pp , 2012.

45 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model The impact of mobility on delay for restricted mobility model   The delay of unicast case   The delay of multicast case   The multicast delay gain Discussion Conclusion and future direction

46 The multicast delay gain Definition of multicast delay gain Multicast Delay Gain: For a given network, we assume that the network delay of multicast is. Moreover, if each node has m destinations, the sum delay of the transmissions from the source to them by unicast is denoted as. Comparing the delay of multicast and multi-unicast, we define the multicast delay gain as The multicast delay gain indicates the enhancement of delay performance by multicast transmission.

47 The multicast gain The multicast delay gain of restricted mobility model   According to the definition of multicast delay gain, the multicast delay upper-bound gain of restricted mobility model can be expressed as

48 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model The impact of mobility on delay for restricted mobility model Discussion Conclusion and future direction

49 Discussion: capacity The upper-bound of the multicast capacity gain   The multicast session can be treated as multiple unicast sessions.   If the multicast is finished during one unicast session, the multicast capacity gain is maximized.

50 Discussion: capacity The lower-bound of the multicast capacity gain   The multicast session can be treated as multiple unicast sessions.   The random i.i.d. mobility model can achieve the lower-bound of multicast capacity gain

51 Discussion: capacity Framework of the multicast capacity gain   Mobility weakens the distinction between multicast and unicast, which is the cost of the capacity enhancement. Brief explanation: the unpredictability of mobility decreases the opportunity of flow aggregation. (Please see page 7)page 7

52   Other affecting factors The distribution of nodes The number of destinations …… Discussion: capacity Framework of the multicast capacity gain

53   The distribution of nodes also impacts the multicast gain The distribution of nodes determines the number of nodes covered by each hop. For a given transmission range, the opportunity of flow aggregation increases with the number of nodes covered by each hop. Therefore, we have following conjecture: Conjecture: The multicast gain is high if the nodes are distributed (or probabilistically distributed) close to a line (or a curve). An example can be found in page 46.page 46 Discussion: capacity Framework of the multicast capacity gain

54   The multicast gain is also related with the number of destinations Brief explanation: the additional destinations may help increase the opportunity of flow aggregation. Discussion: capacity Framework of the multicast capacity gain

55 Discussion: delay Framework of multicast delay gain In multicast case, assuming the unicast delay from source i to one of its destinations j is, the multicast delay gain can be expressed as Since in flooding scheme, the upper-bound of multicast delay gain is and the lower-bound is.

56 Discussion: delay The lower-bound achieving scheme With probability n -3, one node in one part can move to another part in one time slot, and then it moves back to its initial part in the next time slot. Therefore, where poly-logarithmic factors are ignored, i.e., the multicast delay gain is.

57 Outline Introduction System model and main idea The impact of mobility on capacity for restricted mobility model The impact of mobility on delay for restricted mobility model Discussion Conclusion and future direction

58 Conclusion and future direction   This paper studies the essential roles of multicast scheduling and mobility in one-to-many transmission networks. Based on the restricted mobility model, the theoretical analysis indicates that the mobility weakens the distinction between multicast and unicast, i.e., the probability of flow aggregation.   We further propose another two affecting factors of the multicast capacity gain, i.e., the distribution of the nodes and the number of destinations.   Therefore, three interesting future directions arise: What is the optimal delay/throughput tradeoff for restricted mobility model? And what is the corresponding scheme? What is the impact of mobility on multicast in a general mobility model? Is there any other affecting factors of the multicast capacity gain?

59 Comments ? Questions ? Thank you!