MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics §11.3 Variance, Expected-Value
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §11.2 Continuous Probability Any QUESTIONS About HomeWork §11.2 → HW
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 3 Bruce Mayer, PE Chabot College Mathematics §11.3 Learning Goals Compute and use expected value Interpret variance and standard deviation Find expected value for a joint probability density function
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 4 Bruce Mayer, PE Chabot College Mathematics Continuous PDF Expected Value ReCall DISCRETE Random Variable, X, Probability P Distribution The EXPECTED VALUE, or average, by a Weighted Average Calculation X → x1x1 x2x2 x4x4 … xnxn P → p1p1 p2p2 p4p4 … pnpn
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 5 Bruce Mayer, PE Chabot College Mathematics Continuous PDF Expected Value Compare to the Discrete Case a CONTINUOUS PDF described by the Function f(x) Then the Expected Value of the PDF
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 6 Bruce Mayer, PE Chabot College Mathematics Continuous PDF Expected Value If the “Averaging” Interval, or Domain, expands to ±∞ Quick Example: consider the Probability Distribution Function:
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 7 Bruce Mayer, PE Chabot College Mathematics Continuous PDF Expected Value SubStitute the PDF into the Expected Value Integral Thus the Average of the Random Variable is 2/3
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 8 Bruce Mayer, PE Chabot College Mathematics Example CellPh Battery Life The battery of a popular smartphone loses about 20% of its charged capacity after 400 full charges. Assuming one charge per day, then the estimated PDF for the length of tolerable lifespan for a phone that is t years old → For this Phone Find the Average Tolerable LifeSpan
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 9 Bruce Mayer, PE Chabot College Mathematics Example CellPh Battery Life SOLUTION: The Average Tolerable LifeSpan is given by the expected value of the random variable T : Integrate by PARTS Using
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 10 Bruce Mayer, PE Chabot College Mathematics Example CellPh Battery Life Substituting in u & dv Thus the CellPh will have average tolerable lifespan is about years (~326 days).
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 11 Bruce Mayer, PE Chabot College Mathematics Continuous PDF: Var & StdDev ReCall the Variance of a DISCRETE Random Variable Again using: Find And Standard Deviation:
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 12 Bruce Mayer, PE Chabot College Mathematics Simplify Variance Formula First Let E(X) = µ Then Now Expand (Multiply-out) [x−µ] 2 Distribute f(x), and Integrate Term-by- Term, noting that µ is a CONSTANT
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 13 Bruce Mayer, PE Chabot College Mathematics Simplify Variance Formula ReCall a Property of ANY PDF: Also by DEFINITION for a PDF Using the Above in the Var Equation
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 14 Bruce Mayer, PE Chabot College Mathematics Simplify Variance Formula Simplify the Last Equation Thus the Simplified Formula
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 15 Bruce Mayer, PE Chabot College Mathematics Example Expected Value Consider the Probability Distribution Function Then the Expected Value for X
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 16 Bruce Mayer, PE Chabot College Mathematics Example Expected Value And the Variance Then the Standard Deviation
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 17 Bruce Mayer, PE Chabot College Mathematics Joint PDF Consider X & Y continuous random variables whose Probability Distribution Function depends simultaneously on values of Both x, y ; that is For any valid Region A defined by a combination of X & Y
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 18 Bruce Mayer, PE Chabot College Mathematics Joint PDF Properties Joint PDF exhibit the same behavior as single-variable PDF’s In summary, for any valid input Region, R, for the Joint PDF f ( x, y ): 2.
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 19 Bruce Mayer, PE Chabot College Mathematics Joint PDF Expected-Value Calculate E ( X ) and E ( Y ) for the Joint PDF using the same Weighted-Average Method as used for Single Variable PDF And the Y version
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 20 Bruce Mayer, PE Chabot College Mathematics Example Joint PDF Consider this Joint (BiVariate) Probability Distribution function 1.Verify that this is a Valid PDF 2.Calculate P(X ≤ 2,Y ≤ ½ ) 3.Compute E(X) = µ X 4.Compute E(Y) = µ Y
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 21 Bruce Mayer, PE Chabot College Mathematics Example Joint PDF Verify PDF a.For the Given POSITIVE Domains the function 6xy 2 is AlWays NONnegative b.Check Integration to One –as integration is ZERO outside of the 0≤ x,y ≤1 domain
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 22 Bruce Mayer, PE Chabot College Mathematics Example Joint PDF Complete Computations Thus in this case
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 23 Bruce Mayer, PE Chabot College Mathematics Example Joint PDF Calculate P(X ≤ 2,Y ≤ ½ ) Thus P(X ≤ 2,Y ≤ ½ ) = 1/8 = 12.5%
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 24 Bruce Mayer, PE Chabot College Mathematics Example Joint PDF Find E ( X ) = µ X Thus E ( X ) = µ X = 2/3
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 25 Bruce Mayer, PE Chabot College Mathematics Example Joint PDF Find E ( Y ) = µ Y Thus E ( Y ) = µ Y = ¾
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 26 Bruce Mayer, PE Chabot College Mathematics WhiteBoard PPT Work Problems From §11.3 P26 → Rat Maze
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 27 Bruce Mayer, PE Chabot College Mathematics All Done for Today Exponential PDF
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 28 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics Appendix –
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 29 Bruce Mayer, PE Chabot College Mathematics
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 30 Bruce Mayer, PE Chabot College Mathematics
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 31 Bruce Mayer, PE Chabot College Mathematics
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 32 Bruce Mayer, PE Chabot College Mathematics
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 33 Bruce Mayer, PE Chabot College Mathematics
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 34 Bruce Mayer, PE Chabot College Mathematics
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 35 Bruce Mayer, PE Chabot College Mathematics
MTH16_Lec-21_sec_11-2_Continuous_PDFs.pptx 36 Bruce Mayer, PE Chabot College Mathematics By MuPAD Uf := int(a*x*E^(-b*x), x) assume(b, Type::Positive): U1 := int(a*x*E^(-b*x), x=0..infinity) U2 := int(a*x*x*E^(-b*x), x=0..infinity) P := int((1/9)*x*E^(-(1/3)*x), x=5..7) Pnum = float(P)