IGARSS’11 Compact Polarimetry Potentials My-Linh Truong-Loï, Jet Propulsion Laboratory / California Institue of Technology Eric Pottier, IETR, UMR CNRS.

Slides:



Advertisements
Similar presentations
Modèle d'architecture d'arbre:
Advertisements

CONICAL ELECTROMAGNETIC WAVES DIFFRACTION FROM SASTRUGI TYPE SURFACES OF LAYERED SNOW DUNES ON GREENLAND ICE SHEETS IN PASSIVE MICROWAVE REMOTE SENSING.
II Escuela de Optica Biomedica, Puebla, 2011 Polarimeters Jessica C. Ramella-Roman, PhD.
Validation of radiometric models and simulated KaRIn/SWOT data based on ground and airborne acquisitions Page de titre, mentionner contributions Altamira.
On The Use of Polarimetric Orientation for POLSAR Classification and Decomposition Hiroshi Kimura Gifu University, Japan IGARSS 2011 Vancouver, Canada.
On Estimation of Soil Moisture & Snow Properties with SAR Jiancheng Shi Institute for Computational Earth System Science University of California, Santa.
Jet Propulsion Laboratory California Institute of Technology The NASA/JPL Airborne Synthetic Aperture Radar System (AIRSAR) Yunling Lou Jet Propulsion.
Page 1 Operational use of dual- polarisation: lessons learned at Météo France after 8 years of experience at all wavelengths (S / C / X) P. Tabary Météo.
Sar polarimetric data analysis for identification of ships S. Swarajya lakshmi ADRIN, Dept. of Space, Govt. of India India Geospatial Forum – 14 th International.
Space experiment on the International Space Station with P-band SAR Space experiment on the International Space Station with P-band SAR B.Kutuza, A.Kalinkevitch,
Marine Surveillance with RADARSAT-2: Ship and Oil Slick Detection Gordon Staples, Jeff Hurley, Gillian Robert, Karen Bannerman MDA GSI Richmond, BC
Cross-Polarized SAR: A New Potential Technique for Hurricanes Will Perrie and Biao Zhang Bedford Institute of Oceanography Dartmouth, Nova Scotia, Canada.
Polarimetric Radiometer and Scatterometer Measurements Simon H. Yueh Jet Propulsion Laboratory Operational SVW Requirement Workshop, Miami 7 June 2006.
Development of Focusing Algorithms for Arc-scanning Ground-Based Synthetic Aperture Radar Hoonyol Lee Dept. of Geophysics, Kangwon National University.
On Estimation of Surface Soil Moisture from SAR Jiancheng Shi Institute for Computational Earth System Science University of California, Santa Barbara.
ALOS-2 Mission Status and Basic Observation Scenario (BOS)
Biomass retrieval algorithm based on P-band BioSAR experiments of boreal forest Lars Ulander 1,2, Gustaf Sandberg 2, Maciej Soja 2 1 Swedish Defence Research.
1 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I Povo, Trento, Italy 2.
CloudNet: TARA status and database H. Russchenberg, O. Krasnov Delft University of Technology – IRCTR, The Netherlands.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California MITSUBISHI SPACE SOFTWARE.
Ionospheric mitigation schemes and their consequences for BIOMASS product quality O. French & S. Quegan, University of Sheffield, UK J. Chen, Beihang University,
DOCUMENT OVERVIEW Title: Fully Polarimetric Airborne SAR and ERS SAR Observations of Snow: Implications For Selection of ENVISAT ASAR Modes Journal: International.
Radarkartering av skogsbiomassa med P-band Pol-InSAR Lars Ulander, Maciej Soja, Gustaf Sandberg, och Daniel Murdin.
SHIP DETECTION USING X BAND DUAL-POL SAR DATA S. Angelliaume (ONERA) Ph. Durand, J.C. Souyris (CNES)
- Microwave Remote Sensing Group IGARSS 2011, July 23-29, Vancouver, Canada 1 M. Brogioni 1, S. Pettinato 1, E. Santi 1, S. Paloscia 1, P. Pampaloni 1,
APPLICATIONS OF THE INTEGRAL EQUATION MODEL IN MICROWAVE REMOTE SENSING OF LAND SURFACE PARAMETERS In Honor of Prof. Adrian K. Fung Kun-Shan Chen National.
Roughness Model of Radar Backscattering From Bare Soil Surfaces Amimul Ehsan Electrical Engineering and Computer Science Department, University of Kansas.
SWOT Near Nadir Ka-band SAR Interferometry: SWOT Airborne Experiment Xiaoqing Wu, JPL, California Institute of Technology, USA Scott Hensley, JPL, California.
A Measuring Polygon with a Complex of Polarimetric, Combined Active-Passive Sensors of S-, Ku-, and Ka-band of Frequencies for Soil and Snow Remote Sensing.
IGARSS 2011 SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Interpretation on the Evolution of the Vanished Lop Nur Lake Xiaolin.
Synthetic Aperture Radar Specular or Bragg Scatter? OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001.
ESTIMATION OF OCEAN CURRENT VELOCITY IN COASTAL AREA USING RADARSAT-1 SAR IMAGES AND HF-RADAR DATA Moon-Kyung Kang 1, Hoonyol Lee 2, Chan-Su Yang 3, Wang-Jung.
Remote Sensing Microwave Image. 1. Penetration of Radar Signal ► ► Radar signals are able to penetrate some solid features, e.g. soil surface and vegetative.
2011 IEEE International Geoscience And Remote Sensing Symposium IGARSS’11  July 24-29, 2011  Vancouver, C ANADA A synergy between SMOS & AQUARIUS: resampling.
Christian N. Koyama University of Cologne IGARSS 2011 Vancouver, July 26 Soil Moisture Retrieval Under Vegetation Using Dual Polarized PALSAR Data Christian.
TropiSCAT : A MULTI-FREQUENCY POLINSAR DATA CAMPAIGN OF ACQUISITION FOR VEGETATION CHARACTERIZATION Clément ALBINET – Office National d’Etudes et de Recherches.
Comparison of L and P band radar time series for the monitoring of Sahelian area P.-L. Frison, G. Mercier, E. Mougin, P. Hiernaux.
Polarimetric Calibration Using Distributed Odd-bounce Targets Jiong CHEN 1, 3* Motoyuki SATO 2 Jian YANG 3 1. Graduate School of Environmental Studies,
BioSAR 2010 – A SAR campaign in support to the BIOMASS mission
On Estimation of Soil Moisture with SAR Jiancheng Shi ICESS University of California, Santa Barbara.
The Ionosphere and Interferometric/Polarimetric SAR Tony Freeman Earth Science Research and Advanced Concepts Manager.
Retrieval of Soil Moisture and Vegetation Canopy Parameters With L-band Radar for a Range of Boreal Forests Alireza Tabatabaeenejad, Mariko Burgin, and.
biomass TO OBSERVE FOREST BIOMASS
SEA ICE CHARACTERISTICS IN THE SOUTHERN REGION OF OKHOTSK SEA OBSERVED BY X- AND L- BAND SAR Hiroyuki Wakabayashi (Nihon university) Shoji Sakai (Nihon.
TropiSCAT : A MULTI-FREQUENCY POLINSAR DATA CAMPAIGN OF ACQUISITION FOR VEGETATION CHARACTERIZATION Clément ALBINET – Office National d’Etudes et de Recherches.
Faraday Rotation David Le Vine Aquarius Algorithm Workshop March 9-11, 2010.
Level 2 Scatterometer Processing Alex Fore Julian Chaubell Adam Freedman Simon Yueh.
Rick Guritz IGARSS Meeting, July Rick Guritz, Don Atwood 1 Bruce Chapman, and Scott Hensley 2 1)Alaska Satellite Facility 2)NASA Jet Propulsion.
Universitat Politècnica de Catalunya CORRECTION OF SPATIAL ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES L. Wu, I. Corbella, F. Torres, N. Duffo, M. Martín-Neira.
CLPX Workshop May 28-29, 2003 Boulder, Colorado Ground-based Radar Measurements of LSOS Snowpack Gilles CASTRES SAINT-MARTIN Kamal SARABANDI Radiation.
IGARSS’ July, Vancouver, Canada Subsidence Monitoring Using Polarimetric Persistent Scatterers Interferometry Victor D. Navarro-Sanchez and Juan.
DISPLACED PHASE CENTER ANTENNA SAR IMAGING BASED ON COMPRESSED SENSING Yueguan Lin 1,2,3, Bingchen Zhang 1,2, Wen Hong 1,2 and Yirong Wu 1,2 1 National.
TOKYO METROPOLITAN UNIVERSITY Remote Sensing Laboratory 1 RAIN EFFECT ON POLARIMETRIC SAR OBSERVATION Hiroaki Yasuma and Hajime Fukuchi Tokyo Metropolitan.
Spaceborne Polarimetric Microwave Radiometer Brandon Ravenscroft
Spring '17 EECS Intro to Radar Systems
Active Microwave Remote Sensing
Meng Liu,Hong Zhang,Chao Wang, Bo Zhang
Ground Penetrating Radar using Electromagnetic Models
Objectives Using a time series of data from radar sensors to detect and measure forest changes Combining different types of data, including: Multi polarisations.
Estimationg rice growth parameters using X-band scatterometer data
Monitoring of Rice Growth Using Polarimetric Scatterometer System
Roughness Correction for Aquarius (AQ) Sea Surface Salinity (SSS) Algorithm using MicroWave Radiometer (MWR) W. Linwood Jones, Yazan Hejazin Central FL.
Hiroshi Kimura Gifu University, Japan IGARSS 2011 Vancouver, Canada
Radar backscattering measurements of paddy rice field using L, C and X-band polarimetric scatterometer ISRS 2007.
(L, C and X) and Full-polarization
M. L. Williams1 and T. L. Ainsworth2
Cross-Polarized SAR: A New Potential Technique for Hurricanes
M. L. Williams1 and T. L. Ainsworth2
Hiroshi Kimura Gifu University, Japan IGARSS 2011 Vancouver, Canada
Product self-assessment to CARD4L Normalised Radar Backscatter
Presentation transcript:

IGARSS’11 Compact Polarimetry Potentials My-Linh Truong-Loï, Jet Propulsion Laboratory / California Institue of Technology Eric Pottier, IETR, UMR CNRS 6164 Pascale Dubois-Fernandez, ONERA

IGARSS’11 Overview Definition of compact polarimetry mode Calibration of a compact-pol system Simulation of compact-pol data from full-pol raw data Estimation of biomass with compact-pol data

IGARSS’11 Compact polarimetry –1 polarization on transmit –2 polarizations on receive What is the best polarization on transmit? What are the best polarizations on receive? How do we analyze the data? –Calibration –Faraday Rotation –Geophysical parameter estimation Issues

IGARSS’11 ModeSwathResolution Incidence angle HH70km10m8° ~ 60° HH/HV or VV/VH (dual-pol) 70km20m8° ~ 60° Full polar (quad-pol) 30km30m8° ~ 30° Single polarisation  large swath and larger incidence angle range Full polarisation  added characterisation Compact polarisation  full investigation of the dual-pol alternative Background - Example with ALOS system

IGARSS’11 Background - Compact Polarimetry 1/2 π /4 mode: one transmission at 45° and two coherent polarizations in reception (linear H & V, circular right & left,…) π /2 mode: one circular transmission and two coherent polarizations in reception (linear H & V, circular right & left,…) Hybrid polarity : particular case of π /2 : one circular transmission and two coherent linear polarizations in reception (H&V)

IGARSS’11  /4-mode potentials: reconstruction of the PolSAR information (1) –Iterative algorithm based on: Reflection symmetry Coherence between co-polarized channels  /2-mode potentials: avoid Faraday rotation in transmission (2) –Transmit a circular polarized wave –Show results about the reconstruction of the PolSAR information from  /2 mode –Applications possible (3) : Faraday rotation estimate Soil moisture estimate Classification using the conformity coefficient Hybrid polarity potentials: decomposition of natural targets (4) –m -  method based on Stokes parameters (1)J-C. Souyris, P. Imbo, R. FjØrtoft, S. Mingot and J-S. Lee, Compact Polarimetry Based on Symmetry Properties of Geophysical Media: The  /4 Mode, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, March (2)P. C. Dubois-Fernandez, J-C. Souyris, S. Angelliaume and F. Garestier, The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, October (3)M-L Truong-Loï, A.Freeman, P. C. Dubois-Fernandez and E. Pottier, Estimation of Soil Moisture and Faraday Rotation from Bare Surfaces Using Compact Polarimetry, IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 11, Nov (4)R. K. Raney, Hybrid-Polarity SAR Architecture, IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, November Background - Compact Polarimetry 2/2

IGARSS’11 Overview Definition of compact polarimetry mode Calibration of a compact-pol system Simulation of compact-pol data from full-pol raw data Estimation of biomass with compact-pol data

IGARSS’11 Calibration – Full-pol system Full-pol system calibration : 7 unknowns δ 1, δ 2, δ 3, δ 4, Ω, f 1, f 2 The S matrix can be recovered: Distorsions can be retrieved with measures over known targets: –Trihedral, dihedral, transponder, natural targets, etc. A. Freeman et T. Ainsworth, Calibration of longer wavelength polarimetric SARs, Proceedings of EUSAR 2008, Friedrishafen, Allemagne, June S. Quegan, A Unified Algorithm for Phase and Cross-Talk Calibration of Polarimetric Data – Theory and Observations, IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 1, pp , January J. J. van Zyl, Calibration of Polarimetric Radar Images Using Only Image Parameters and Trihedral Corner Reflector Responses, IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 3, pp , May 1990.

IGARSS’11 Calibration – Compact-pol system Compact polarimetric system: The transmission defects cannot be corrected a posteriori System needs to be of high quality before transmission With a high-quality transmission  4 unknowns  1,  2, , f 1

IGARSS’11 Compact polarisation –3 reference targets are necessary 0° 45° Trihedral Full polarisation –More unknowns –But less targets are required –Natural targets can be used –Acquisition of both HV and VH Calibration – Compact-pol system

IGARSS’11 Overview Definition of compact polarimetry mode Calibration of a compact-pol system Simulation of compact-pol data from full-pol raw data Estimation of biomass with compact-pol data

IGARSS’11 Simulated compact polarimetric data Simulation of CP data is necessary How do we proceed? –Two options: From raw data From processed data Comparison between the two approaches {R;G;B}={HH;HV;VV}, SETHI data, L-band, Garons Example of raw data, range spectra HH

IGARSS’11 Building compact polarimetric data Processed data Raw data Process 1 Processing (corrections, antenna beam, etc.) Calibration : M RHpro Hilbert transform Processing (corrections, antenna beam, etc.) Calibration: M RH Process 2

IGARSS’11 Building CP data - Process 1 / Process 2 Image of CP data from FP raw data, {R ;G;B}={ M Rh +M Rv ;M Rh ;M Rv } Image of CP data from FP processed data, {R ;G ;B}={ M Rh_pro +M Rv_pro ;M Rh_pro ;M Rv_pro } 0 1Coherence between both images

IGARSS’11 Compact-pol - Process 2 / Process 2 FP data {R;G;B}={ ; ; } FP reconstructed {R;G;B}={ ; ; }

IGARSS’11 Overview Definition of compact polarimetry mode Calibration of a compact-pol system Simulation of compact-pol data from full-pol raw data Estimation of biomass with compact-pol data

IGARSS’11 Backscattering coefficients and biomass – RAMSES P- band data over Nezer forest (HV) (RR) (RH) (HV)

IGARSS’11 Biomass estimate – Nezer forest PolarizationRMS error (tons/ha) quadratic regression RMS error (tons/ha) exponential regression HV HV RR6.6 RH RMS error = 2.6 tons/ha (HV vs HV)

IGARSS’11 Biomass map – Nezer forest 120 tons/ha 0

IGARSS’11 Biomass map – Nezer forest B HV B RR 120 tons/ha 0 Measured biomass

IGARSS’11 Biomass estimate with HV regression RMS error=20.1 tons/ha Bias=19.5 tons/ha Using the HV regression as a reference, computation of the biomass with HV backscattering coefficient

IGARSS’11 Summary: systems implications Compact-pol allows –To acquire larger swath (versus FP) –To access wider incidence angle range (versus FP) –To avoid Faraday rotation in transmission (versus DP) Calibration –A solution with 3 external targets Raw data –Equivalence between CP from FP raw data and from FP processed data Biomass estimate –FP: RMS error for HV: 5.8 tons/ha –CP: RMS error for HV reconstructed: 6.3 tons/ha –CP: RMS error for RR: 6.6 tons/ha

IGARSS’11 Thank you for your attention