K. Salah 1 Beyond Best Effort Technologies Our primarily objective here is to understand more on QoS mechanisms so that you can make informed decision.

Slides:



Advertisements
Similar presentations
IETF Differentiated Services Concerns with Intserv: r Scalability: signaling, maintaining per-flow router state difficult with large number of flows r.
Advertisements

CS640: Introduction to Computer Networks Aditya Akella Lecture 20 – QoS.
1 Providing Quality of Service in the Internet Based on Slides from Ross and Kurose.
Improving QOS in IP Networks Thus far: “making the best of best effort” Future: next generation Internet with QoS guarantees m RSVP: signaling for resource.
Real-Time Protocol (RTP) r Provides standard packet format for real-time application r Typically runs over UDP r Specifies header fields below r Payload.
Chapter 6 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July.
Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time, Interactive Multimedia: Internet.
Differentiated Services. Service Differentiation in the Internet Different applications have varying bandwidth, delay, and reliability requirements How.
Quality of Service Support
CSIS TAC-TOI-01 Quality of Service & Traffic Engineering (QoS & TE) Khaled Mohamed Credit: some of the sides are from Cisco Systems.
Chapter 6 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July.
7: Multimedia Networking7-1 Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video (“continuous media”) network provides.
1 School of Computing Science Simon Fraser University CMPT 771/471: Internet Architecture and Protocols Multimedia Networking and Quality of Service Instructor:
ACN: IntServ and DiffServ1 Integrated Service (IntServ) versus Differentiated Service (Diffserv) Information taken from Kurose and Ross textbook “ Computer.
Chapter 6: Multimedia Networking
1 School of Computing Science Simon Fraser University CMPT 820: Multimedia Systems Introduction Instructor: Dr. Mohamed Hefeeda.
QoS (Quality of Service) Chapter 6 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith.
CSE 401N Multimedia Networking-2 Lecture-19. Improving QOS in IP Networks Thus far: “making the best of best effort” Future: next generation Internet.
Chapter 6: Multimedia Networking
School of Information Technologies IP Quality of Service NETS3303/3603 Weeks
Quality of Service Support
Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks.
CSc 461/561 CSc 461/561 Multimedia Systems Part C: 3. QoS.
Internet Quality of Service. Quality of Service (QoS) The best-effort model, in which the network tries to deliver data from source to destination but.
24-1 Chapter 24. Congestion Control and Quality of Service part Quality of Service 23.6 Techniques to Improve QoS 23.7 Integrated Services 23.8.
SIP r Session Initiation Protocol r Comes from IETF SIP long-term vision r All telephone calls and video conference calls take place over the Internet.
Ch 7. Multimedia Networking Myungchul Kim
Chapter 17 Integrated and Differentiated Services 1 Integrated and Differentiated Services COMP5416 Chapter 17.
QoS Guarantees  introduction  call admission  traffic specification  link-level scheduling  call setup protocol  required reading: text, ,
Integrated Services Advanced Multimedia University of Palestine University of Palestine Eng. Wisam Zaqoot Eng. Wisam Zaqoot December 2010 December 2010.
CIS679: Scheduling, Resource Configuration and Admission Control r Review of Last lecture r Scheduling r Resource configuration r Admission control.
Integrated Services (RFC 1633) r Architecture for providing QoS guarantees to individual application sessions r Call setup: a session requiring QoS guarantees.
1 Integrated and Differentiated Services Multimedia Systems(Module 5 Lesson 4) Summary: r Intserv Architecture RSVP signaling protocol r Diffserv Architecture.
1 Chapter 6 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
IntServ / DiffServ Integrated Services (IntServ)
CSE679: QoS Infrastructure to Support Multimedia Communications r Principles r Policing r Scheduling r RSVP r Integrated and Differentiated Services.
CS Spring 2011 CS 414 – Multimedia Systems Design Lecture 23 - Multimedia Network Protocols (Layer 3) Klara Nahrstedt Spring 2011.
CSE QoS in IP. CSE Improving QOS in IP Networks Thus far: “making the best of best effort”
Computer Networking Intserv, Diffserv, RSVP.
QOS مظفر بگ محمدی دانشگاه ایلام. 2 Why a New Service Model? Best effort clearly insufficient –Some applications need more assurances from the network.
1 Internet Quality of Service (QoS) By Behzad Akbari Spring 2011 These slides are based on the slides of J. Kurose (UMASS)
Class-based QoS  Internet QoS model requires per session state at each router  1000s s of flows  per session RSVP is complex => reluctance.
11: Multimedia Networking 11-1 Chapter 11 Multimedia Networking A note on the use of these ppt slides: We’re making these slides freely available to all.
Chapter 5: Summary r principles behind data link layer services: m error detection, correction m multiple access protocols m link layer addressing, ARP.
7: Multimedia Networking7-1 Chapter 7 Multimedia Networking A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
Multimedia, Quality of Service: What is it?
Beyond Best-Effort Service Advanced Multimedia University of Palestine University of Palestine Eng. Wisam Zaqoot Eng. Wisam Zaqoot November 2010 November.
Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-IP 7.4 protocols for real-time conversational.
Network Support for QoS – DiffServ and IntServ Hongli Luo CEIT, IPFW.
Lecture 20 Multimedia Networking (cont) CPE 401 / 601 Computer Network Systems slides are modified from Dave Hollinger slides are modified from Jim Kurose,
Providing QoS in IP Networks Future: next generation Internet with QoS guarantees m Differentiated Services: differential guarantees m Integrated Services:
Multimedia and QoS#1 Quality of Service Support. Multimedia and QoS#2 QOS in IP Networks r IETF groups are working on proposals to provide QOS control.
Internet multimedia: simplest approach audio, video not streamed: r no, “pipelining,” long delays until playout! r audio or video stored in file r files.
CS640: Introduction to Computer Networks Aditya Akella Lecture 21 – QoS.
EE 122: Lecture 15 (Quality of Service) Ion Stoica October 25, 2001.
1 Multimedia Networking: Beyond Best-Effort Internet.
Ch 6. Multimedia Networking Myungchul Kim
Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time, Interactive Multimedia: Internet.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
Providing QoS in IP Networks
1 Lecture 15 Internet resource allocation and QoS Resource Reservation Protocol Integrated Services Differentiated Services.
Chapter 30 Quality of Service Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Advanced Computer Networks
QoS & Queuing Theory CS352.
QoS Guarantees introduction call admission traffic specification
CIS679: Two Planes and Int-Serv Model
Real-Time Protocol (RTP)
Network Support for Quality of Service (QoS)
Real-Time Protocol (RTP)
Presentation transcript:

K. Salah 1 Beyond Best Effort Technologies Our primarily objective here is to understand more on QoS mechanisms so that you can make informed decision on opting for network devices and gadgets that support it. Chapter 6 of Kurose & Ross

K. Salah 2 Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video (“continuous media”) network provides application with level of performance needed for application to function. QoS

K. Salah 3 Goals Principles r Classify multimedia applications r Identify the network services the apps need r Making the best of best effort service r Mechanisms for providing QoS Protocols and Architectures r Specific protocols for best-effort r Architectures for QoS

K. Salah 4 outline r Multimedia Networking Applications r Beyond Best Effort r Scheduling and Policing Mechanisms r Integrated Services r RSVP (covered earlier) r Differentiated Services

K. Salah 5 MM Networking Applications Fundamental characteristics: r Typically delay sensitive m end-to-end delay m delay jitter r But loss tolerant: infrequent losses cause minor glitches r Antithesis of data, which are loss intolerant but delay tolerant. Classes of MM applications: 1) Streaming stored audio and video 2) Streaming live audio and video 3) Real-time interactive audio and video Jitter is the variability of packet delays within the same packet stream

K. Salah 6 Real-time interactive applications r PC-2-PC phone m instant messaging services are providing this r PC-2-phone m Dialpad m Net2phone r videoconference with Webcams Going to now look at a PC-2-PC Internet phone example in detail

K. Salah 7 Interactive Multimedia: Internet Phone Introduce Internet Phone by way of an example r speaker’s audio: alternating talk spurts, silent periods. m 64 kbps during talk spurt r pkts generated only during talk spurts m 20 msec chunks at 8 Kbytes/sec: 160 bytes data r application-layer header added to each chunk. r Chunk+header encapsulated into UDP segment. r application sends UDP segment into socket every 20 msec during talkspurt.

K. Salah 8 Internet Phone: Packet Loss and Delay r network loss: IP datagram lost due to network congestion (router buffer overflow) r delay loss: IP datagram arrives too late for playout at receiver m delays: processing, queueing in network; end-system (sender, receiver) delays m typical maximum tolerable delay: 400 ms r loss tolerance: depending on voice encoding, losses concealed, packet loss rates between 1% and 10% can be tolerated.

K. Salah 9 constant bit rate transmission Cumulative data time variable network delay (jitter) client reception constant bit rate playout at client client playout delay buffered data Delay Jitter r Consider the end-to-end delays of two consecutive packets: difference can be more or less than 20 msec

K. Salah 10 outline r Multimedia Networking Applications r Beyond Best Effort r Scheduling and Policing Mechanisms r Integrated Services r RSVP r Differentiated Services

K. Salah 11 Improving QOS in IP Networks Thus far: “making the best of best effort” Future: next generation Internet with QoS guarantees m RSVP: signaling for resource reservations m Differentiated Services: differential guarantees m Integrated Services: firm guarantees r simple model for sharing and congestion studies:

K. Salah 12 Principles for QOS Guarantees r Example: 1MbpsI P phone, FTP share 1.5 Mbps link. m bursts of FTP can congest router, cause audio loss m want to give priority to audio over FTP packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly Principle 1

K. Salah 13 Principles for QOS Guarantees (more) r what if applications misbehave (audio sends higher than declared rate) m policing: force source adherence to bandwidth allocations r marking and policing at network edge: m similar to ATM UNI (User Network Interface) provide protection (isolation) for one class from others Principle 2

K. Salah 14 Principles for QOS Guarantees (more) r Allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn’t use its allocation While providing isolation, it is desirable to use resources as efficiently as possible Principle 3

K. Salah 15 Principles for QOS Guarantees (more) r Basic fact of life: can not support traffic demands beyond link capacity Call Admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs Principle 4

K. Salah 16 Summary of QoS Principles Let’s next look at mechanisms for achieving this ….

K. Salah 17 outline r Multimedia Networking Applications r Beyond Best Effort r Scheduling and Policing Mechanisms r Integrated Services r RSVP r Differentiated Services

K. Salah 18 Scheduling And Policing Mechanisms r scheduling: choose next packet to send on link r FIFO (first in first out) scheduling: send in order of arrival to queue m real-world example? m discard policy: if packet arrives to full queue: who to discard? Tail drop: drop arriving packet priority: drop/remove on priority basis random: drop/remove randomly

K. Salah 19 Scheduling Policies: more Priority scheduling: transmit highest priority queued packet r multiple classes, with different priorities m class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.. m Real world example?

K. Salah 20 Scheduling Policies: still more round robin scheduling: r multiple classes r cyclically scan class queues, serving one from each class (if available) r real world example?

K. Salah 21 Scheduling Policies: still more Weighted Fair Queuing: r generalized Round Robin r each class gets weighted amount of service in each cycle r real-world example?

K. Salah 22 Policing Mechanisms Goal: limit traffic to not exceed declared parameters Three common-used criteria: r (Long term) Average Rate: how many pkts can be sent per unit time (in the long run) m crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average! r Peak Rate: e.g., 6000 pkts per min. (ppm) avg.; 1500 ppm peak rate r (Max.) Burst Size: max. number of pkts sent consecutively (with no intervening idle)

K. Salah 23 Policing Mechanisms Token Bucket: limit input to specified Burst Size and Average Rate. r bucket can hold b tokens r tokens generated at rate r token/sec unless bucket full r over interval of length t: number of packets admitted less than or equal to (r t + b).

K. Salah 24 Policing Mechanisms (more) r token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee! WFQ token rate, r bucket size, b per-flow rate, R D = b/R max arriving traffic

K. Salah 25 outline r Multimedia Networking Applications r Beyond Best Effort r Scheduling and Policing Mechanisms r Integrated Services r RSVP r Differentiated Services

K. Salah 26 IETF Integrated Services r architecture for providing QOS guarantees in IP networks for individual application sessions r resource reservation: routers maintain state info (a la VC) of allocated resources, QoS req’s r admit/deny new call setup requests: Question: can newly arriving flow be admitted with performance guarantees while not violating QoS guarantees made to already admitted flows?

K. Salah 27 Intserv: QoS guarantee scenario r Resource reservation m call setup, signaling (RSVP) m traffic, QoS declaration m per-element admission control m QoS-sensitive scheduling (e.g., WFQ) request/ reply

K. Salah 28 Call Admission Arriving session must : r declare its QOS requirement m R-spec: defines the QOS being requested r characterize traffic it will send into network m T-spec: defines traffic characteristics r signaling protocol: needed to carry R-spec and T- spec to routers (where reservation is required) m RSVP

K. Salah 29 Intserv QoS: Service models [rfc2211, rfc 2212] Guaranteed service: r worst case traffic arrival: leaky- bucket-policed source r simple (mathematically provable) bound on delay [Parekh 1992, Cruz 1988] Controlled load service: r "a quality of service closely approximating the QoS that same flow would receive from an unloaded network element.“ r Simple and no calculation r Works well under lightly loaded network, but degrades in performance under high load. WFQ token rate, r bucket size, b per-flow rate, R D = b/R max arriving traffic

K. Salah 30 outline r Multimedia Networking Applications r Beyond Best Effort r Scheduling and Policing Mechanisms r Integrated Services r RSVP r Differentiated Services

K. Salah 31 IETF Differentiated Services Concerns with Intserv: r Scalability: signaling, maintaining per-flow router state difficult with large number of flows r Flexible Service Models: Intserv has only very few classes. Also want “qualitative” service classes m “behaves like a wire” m relative service distinction: Platinum, Gold, Silver Diffserv approach: r simple functions in network core, relatively complex functions at edge routers (or hosts) r Don’t define service classes, provide functional components to build service classes

K. Salah 32 Diffserv Architecture Edge router: - per-flow traffic management - marks packets as in-profile and out-profile Core router: - per class traffic management - buffering and scheduling based on marking at edge - preference given to in-profile packets - Assured Forwarding scheduling... r b marking

K. Salah 33 Edge-router Packet Marking r class-based marking: packets of different classes marked differently r intra-class marking: conforming portion of flow marked differently than non-conforming one r profile: pre-negotiated rate A, bucket size B r packet marking at edge based on per-flow profile Possible usage of marking: User packets Rate A B

K. Salah 34 Classification and Conditioning r Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6 r 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB (per-hop behavior) that the packet will receive r (CU) bits are currently unused

K. Salah 35 Classification and Conditioning may be desirable to limit traffic injection rate of some class: r user declares traffic profile (eg, rate, burst size) r traffic metered, shaped if non-conforming

K. Salah 36 Forwarding (PHB) r PHB results in a different observable (measurable) forwarding performance behavior r PHB does not specify what mechanisms to use to ensure required PHB performance behavior r Examples: m Class A gets x% of outgoing link bandwidth over time intervals of a specified length m Class A packets leave first before packets from class B

K. Salah 37 Forwarding (PHB) PHBs being developed: r Expedited Forwarding: pkt departure rate of a class equals or exceeds specified rate m logical link with a minimum guaranteed rate m Provides isolation among traffic classes r Assured Forwarding: 4 classes of traffic m each guaranteed minimum amount of bandwidth m each with three drop preference partitions