Target gene gRNA NameTarget sequence / PAM*Restriction Enzyme Young Seedling Albino (YSA)gYSAGCGCGCCACCTCGGCCGAAG / CGGSfiI Phytoene desaturase (PDS) gPDS-1†CGTCCAACCCATTCCTCTGC.

Slides:



Advertisements
Similar presentations
Chapter 20: Biotechnology. O.J. Simpson capital murder case,1/95-9/95 Odds of blood in Ford Bronco not being R. Goldman’s: 6.5 billion to 1 Odds of blood.
Advertisements

Using mutants to clone genes Objectives 1. What is positional cloning? 2.What is insertional tagging? 3.How can one confirm that the gene cloned is the.
Targeted gene alteration in Caenorhabditis elegans by gene conversion Peter L Barrett, John T Fleming & Verena Göbel Nat Genet Oct 24.
Chapter 6 PCR and in vitro Mutagenesis A. Basic features of PCR 1. PCR is a cell-free method of DNA cloning standard PCR reaction is a selective DNA amplification.
Recombinant DNA Technology. Restriction endonucleases - Blunt ends and Sticky ends.
Supplemental Figure 1. The wxr3 mutant exhibits decreased expression of CYCB1;1, SCR and SHR compared with the control. A and B, Expression of ProCYCB1;1:GUS.
Recombinant DNA What is the basis of recombinant DNA technology? How does one “clone” a gene? How are genetically modified organisms (GMOs) created? Illustration.
A b Fig. S1 Expression constructs for Cas9 without DsRed gene, and Cas9 mRNA level in pZD_Cas9 transformed calli. a pZH_Cas9 without the DsRed expression.
WT#3#5#7#9#11#14#15#20#25#30 35S::JAZ13 Root length ratio * * * * * * * * * * Figure S2. Overexpression of native (untagged)
Targeted Disruption of V600E-Mutant BRAF Gene by CRISPR-Cpf1
Figure 1. AsCpf1 and LbCpf1-mediated gene editing in human cells
Volume 17, Issue 2, Pages (August 2015)
Figure S1. Analysis of the embryo edited using gRNA-2 and HF2-BE2
Yuming Lu, Jian-Kang Zhu  Molecular Plant 
Genome editing in plants using small Cas9 and FnCpf1
Step 1: amplification and cloning procedures
Dan Ding, Kaiyuan Chen, Yuedan Chen, Hong Li, Kabin Xie 
Volume 8, Issue 12, Pages (December 2015)
CRISPR/Cas9-mediated genome editing of PML in human cell lines.
Albino phenotype and reduced cpDNA copy number in cptk1 plants.
Relationship between Genotype and Phenotype
Generation of Alternative Ultrabithorax Isoforms and Stepwise Removal of a Large Intron by Resplicing at Exon–Exon Junctions  Allyson R Hatton, Vaidyanathan.
Volume 156, Issue 4, Pages (February 2014)
Mouse Genome Engineering via CRISPR-Cas9 for Study of Immune Function
Rapid Decoding of Sequence-Specific Nuclease-Induced Heterozygous and Biallelic Mutations by Direct Sequencing of PCR Products  Xingliang Ma, Letian Chen,
Volume 154, Issue 6, Pages (September 2013)
Volume 7, Issue 1, Pages (April 2014)
Expanding the Scope of CRISPR/Cpf1-Mediated Genome Editing in Rice
Volume 171, Issue 2, Pages e8 (October 2017)
USH2A Gene Editing Using the CRISPR System
Supplemental Figure 3 A B C T-DNA 1 2 RGLG1 2329bp 3 T-DNA 1 2 RGLG2
Volume 17, Issue 2, Pages (August 2015)
Objective: Convert a hulled (covered) barley into a hull-less (Naked
Comprehensive Mutation Analysis of the CYP21A2 Gene
Yeast Origins Establish a Strand Bias for Replicational Mutagenesis
Andrew R. Bassett, Charlotte Tibbit, Chris P. Ponting, Ji-Long Liu 
Volume 154, Issue 6, Pages (September 2013)
Volume 10, Issue 7, Pages (July 2017)
Unified Solo vectors for mutagenesis in C. albicans.
RAD51 is essential for L. donovani.
Volume 11, Issue 4, Pages (April 2018)
WRKY20 dual sgRNA approach.
Expanding the Range of CRISPR/Cas9 Genome Editing in Rice
Molecular Therapy - Nucleic Acids
Volume 15, Issue 10, Pages (May 2005)
Volume 23, Issue 3, Pages (March 2015)
Tagging of the endogenous Py03652 gene with the gfp gene in Plasmodium yoelii. Tagging of the endogenous Py03652 gene with the gfp gene in Plasmodium yoelii.
Volume 6, Issue 4, Pages (July 2013)
Volume 26, Issue 6, Pages (June 2018)
Generation of heterozygous mutations with the CRISPR-Cas9 system.
Inactivation of the Dp1 locus.
Fig. 4. Mutations induced by TALENs are heritable through the germline
Volume 7, Issue 8, Pages (August 2014)
The sh339 and qmc554 alleles of gfi1b.
Anthony M. Raizis, Martin M. Ferguson, David T. Nicholls, Derek W
Fig. 4 Gene disruption via chip.
Schematic design of the SSM
Fig. 6. F1 trβ mutants accomplish natural metamorphosis.
Amplicon sequencing analysis of on-target sites in trβ crispants
Volume 171, Issue 2, Pages e8 (October 2017)
Multiplexed Mutagenesis Using the Csy4 System in Tomato Protoplasts.
MMEJ plays a dominant role in double-strand DNA break repair in L
Fig. 2 Cas9/RecA-mediated in vivo gene correction of Pde6b.
Recombination of a Cas9-created DNA fragment with and without end repair. Recombination of a Cas9-created DNA fragment with and without end repair. (A)
Volume 9, Issue 4, Pages (April 2016)
Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat
Potent and sequence-specific removal through genome targeting with CRISPR-Cas systems. Potent and sequence-specific removal through genome targeting with.
Comparison of Different Systems for Expressing Multiple gRNAs.
Knock-in of the rpl42-P56Q mutation using the split-ura4 system.
Fig. 3 Genome editing of the MSTN gene.
Presentation transcript:

Target gene gRNA NameTarget sequence / PAM*Restriction Enzyme Young Seedling Albino (YSA)gYSAGCGCGCCACCTCGGCCGAAG / CGGSfiI Phytoene desaturase (PDS) gPDS-1†CGTCCAACCCATTCCTCTGC / AGGPstI gPDS-2TGCTTTAAACCGATTTCTTC / AGG× †† gPDS-3ACAGTTGTTTGATCAGCACA / GGG× †† gPDS-4TAAGAAGGATGTAATACGTA / AGGSnaBI Drooping Leaf (DL) gDL-1TCTTTTGGGTAGCTGCAGGT / TGGPstI gDL-2ACTGACCTGAAACGGGCCCA / AGGApaI gDL-3GACCTTGCACTGACTGCAGG / AGGPstI gDL-4TCTCAAACGCTTGCCATGCA / TGGNsiI DNA Ligase IV (LigIV) gLigIV-1ATAGATCGTGAAACAGGTCC / TGG× †† gLigIV-2GCAGAACTCGCTGAGGCCTG / TGGStuI gLigIV-3GTCAGTTACAAGGACGTCGC / CGGAatII gLigIV-4CCAATCCTTCAGAAGTGCAC / CGGApaLI Acetolactate synthase (ALS) gALS-1TTCTTTGTTACACGGACTGC / AGGPstI gALS-2CCAGCTCCTGAATGTTCATG / AGGBspHI gALS-3TTTGGGCTGCCTGCTGCAGC / TGGPvuII gALS-4ACAGAAGCACCAGCTGCAGC / AGGPstI Online Resource 1. List of target genes, target sequences and restriction enzymes used in CAPS analysis. * Restriction enzyme recognition sequences are underlined. † gPDS-1 was the OsPDS-SP2 target locus (Shan et al., 2013) on the PDS gene. ††Mutations detected by Cel I analysis.

UsagePrimer nameSequence (5’  3’) gRNA-oligogPDS-1-F GTTGCGTCCAACCCATTCCTCTGC gPDS-1-R AAACGCAGAGGAATGGGTTGGACG gPDS-2-F GTTGTGCTTTAAACCGATTTCTTC gPDS-2-R AAACGAAGAAATCGGTTTAAAGCA gPDS-3-F GTTGACAGTTGTTTGATCAGCACA gPDS-3-R AAACTGTGCTGATCAAACAACTGT gPDS-4-F GTTGTAAGAAGGATGTAATACGTA gPDS-4-R AAACTACGTATTACATCCTTCTTA gDL-1-F GTTGTCTTTTGGGTAGCTGCAGGT gDL-1-R AAACACCTGCAGCTACCCAAAAGA gDL-2-F GTTGACTGACCTGAAACGGGCCCA gDL-2-R AAACTGGGCCCGTTTCAGGTCAGT gDL-3-F GTTGGACCTTGCACTGACTGCAGG gDL-3-R AAACCCTGCAGTCAGTGCAAGGTC gDL-4-F GTTGTCTCAAACGCTTGCCATGCA gDL-4-R AAACTGCATGGCAAGCGTTTGAGA gLigIV-1-F GTTGATAGATCGTGAAACAGGTCC gLigIV-1-R AAACGGACCTGTTTCACGATCTAT gLigIV-2-F GTTGGCAGAACTCGCTGAGGCCTG gLigIV-2-R AAACCAGGCCTCAGCGAGTTCTGC gLigIV-3-F GTTGGTCAGTTACAAGGACGTCGC gLigIV-3-R AAACGCGACGTCCTTGTAACTGAC gLigIV-4-F GTTGCCAATCCTTCAGAAGTGCAC gLigIV-4-R AAACGTGCACTTCTGAAGGATTGG gALS-1-F GTTGTTCTTTGTTACACGGACTGC gALS-1-R AAACGCAGTCCGTGTAACAAAGAA gALS-2-F GTTGCCAGCTCCTGAATGTTCATG gALS-2-R AAACCATGAACATTCAGGAGCTGG gALS-3-F GTTGTTTGGGCTGCCTGCTGCAGC gALS-3-R AAACGCTGCAGCAGGCAGCCCAAA gALS-4-F GTTGACAGAAGCACCAGCTGCAGC gALS-4-R AAACGCTGCAGCTGGTGCTTCTGT Online Resource 2. List of primers used in this study.

UsagePrimer nameSequence (5’  3’) CAPS PCR YSA-FCATGCGCTCTCTTCCCCACCTGTACTT YSA-RCCCTAGCACCCATCTCCGAGTACACTGATT PDS-1F TGCAAGGTACTAACTAGGAGACATT PDS-1R TTGTAAACAGATCTGTAACAGTGAG PDS-2F TCACATTGGGAAGAACTGGCAGT PDS-2R AAGAGCGAACATGGTCAACAATAGGCATGC DL-1F CAGTGTCATGTTCCATCTTTCGCTTCCA DL-1R ATGGGCAAGAGAGAAATCTTTTGCAATCCA DL-2F TGCAAAAGATTTCTCTCTTGCCCATCTGTG DL-2R TTTCTCACCTCATGAAGCGGTTGTAAGCAG LigIV-F TGACAAGCTTGAGGAAAATGAGAAGGCTGA LigIV-R ATGGCAACCTACTCCTCTCACAACACAACG ALS-F AATTATGCCGTGGATAAGGCTGACCTGTTG ALS-R ACCCAATAAGATCGACCGAAGAGAGGGAAA continued

Target gene Mutation frequency in transgenic callus (%) No. of T0 regenerated plants No. of mono- allelic mutants Ratio of mono-allelic mutants (%) No. of bi- allelic mutants Ratio of bi- allelic mutants (%) Ratio of mutated plants (%) YSA Online Resource 3. Mutation frequency in pZH_MMOsCas9 and pZK_OsU3-gYSA transformed callus and ratio of mutated regenerated plants.

(A) (B)(B) Online Resource 4. High-efficiency targeted mutagenesis using pZH_OsU6gRNA_MMCas9 vector in rice DL gene. A CAPS analysis of the gDL-1, gDL-2 and gDL-4 loci. DNAs extracted from independent transformed calli of Cas9/gRNA all-in-one vector were subjected to PCR and subsequent restriction enzyme digestion. WT, non-transgenic callus lines. Mutation frequencies in line #1 (yellow dashed square) are shown below. B Mutations detected by sequencing analysis. The wild type sequence is shown at the top with the PAM sequence highlighted in green, the 20 nt target sequence in red. The blue arrowhead indicates the expected cleavage site. Dash, deleted bases. The net change in length is shown to the right of each sequence (+, insertion; – deletion).

Online Resource 5. Mutations detected in regenerated plants obtained from pZH_OsU6gRNA_MMCas9 transformed calli. The number of regenerated plants representing each mutant allele is shown in brackets. (b), bi-allelic mutant plants with same mutation.

callus No.#3 Regenerated plants123 gDL-1BBB Mutations +1(A), (T), (A,T) PhenotypeDW*D callus No.#1#2 Regenerated plants gDL-2 BBBBBMMBBBBBB Mutations +1 (T,T) +1 (T,C) +1 (T,C) +1 (T,T) -29, +1(A) +1(T) , +1(A) +1 (T,C) +1 (T,T) +1 (A,A) +1 (A,A) +1 (T,T) PhenotypeDDDDDWWDDDDDD callus No.#1#3 Regenerated plants gDL-4†BBBBBMBBBMBB Mutations -11, (A,A) +1 (A,A) +1 (A,A) -2, -2 +1(A) -2, (A,A) -2, +1(A) +1 (A,A) +1 (A,A) PhenotypeWWWWWWWWWWWW B, bi-allelic mutation M, mono-allelic mutation N, non-mutation D, drooping leaf W, wild type Online Resource 6. Mutations in DL gene in regenerated plants obtained from transformed calli, of pZH_OsU6gRNA_MMCas9, which target gDL-1, 2, 3 or 4. *bi-allelic mutant plant with 3-nt deletion. † Cleavage site of gDL-4 exists in intron. Callus No.#3 Regenerated plants gDL-3BBNBBBBBBM Mutations -1, -4 -3, (C,C) +1 (C,C) -10, +1(T) -3, , (C,C) +1(C) PhenotypeDW*WDDD DW