Further distributions
Discrete random variables
Expectation and variance Read Examples 4.18-4.20, pp.257-260 Do Q1-Q7, p.261
Linear combinations of normal variables Read Examples 8.1-8.11, pp.403-417 Do Q1-Q4, p.417
The Poisson distribution
Properties of the Poisson distribution Read Examples 5.18-5.21, pp.292-295 Do Q1-Q10, pp.297-298
The sum of independent Poisson variables Read Examples 5.25 & 5.26, pp.301-302 Do Exercise 5f, p.303
Continuous random variables Read Examples 6.1 – 6.4, pp.315-319 Do Exercise 6a, pp.319-320
Expectation Read Examples 6.5 – 6.7, pp.320-323 Do Exercise 6b, pp.323-324 Read Examples 6.8 – 6.10, pp.325-327
Variance and mode Read Examples 6.11 – 6.15, pp.328-333 Do Exercise 6c, pp.333-334
Cumulative distribution function
Median, quartiles and other percentiles Read Examples 6.16 & 6.17, pp.336-339 Do Exercise 6d, pp.339-341
Cumulative distribution function Read Examples 6.18 - 6.20, pp.341-343 Cumulative distribution function Do Exercise 6e, pp.343-344
Uniform distribution Read Examples 6.21 - 6.26, pp.345-349 Do Exercise 6f, pp.349-350
The p.d.f. of a related variable Frequently, the random variable being measured is not the ultimate objective. What many be of primary interest is some function of these variables. p.d.f. of X c.d.f. of X c.d.f. of Y p.d.f. of Y
Example 1
Example 2
Questions
The geometric distribution Read Examples 5.2, pp.273 - 274 The geometric distribution
The geometric distribution Read Examples 5.3 -5.6, pp.274 - 276 Do Exercise 5a, pp.276 - 277
Deriving the (negative) exponential distribution Differentiating yields:
The exponential distribution and so:
Example 1
Shape of the exponential distribution
Expectation and variance of the exponential distribution
Example 1
Example 2
Questions 1. 2. 3. 4. 5. 6.