Chapter 4-1 Continuous Random Variables 主講人 : 虞台文.

Slides:



Advertisements
Similar presentations
第二章 研究主題(研究題 目)與研究問題.
Advertisements

Chapter 10 馬可夫鏈 緒言 如果讀者仔細觀察日常生活中所發生的 諸多事件,必然會發現有些事件的未來 發展或演變與該事件現階段的狀況全然 無關,這種事件稱為獨立試行過程 (process of independent trials) ;而另一些 事件則會受到該事件現階段的狀況影響。
1 Chemical and Engineering Thermodynamics Chapter 2 Conservation of mass and energy Sandler.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
Time Sampling 時間取樣觀察法.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
CH22 可靠性加速測試方法 目的 基本假設 加速試驗模式 Inverse Power Model
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
© The McGraw-Hill Companies, Inc., 2008 第 6 章 製造流程的選擇與設計.
BEM 特論 - 第一次討論 指導教授 : 陳正宗 終身特聘教授 指導學長 : 高聖凱、謝祥志、林羿州 學生 : 吳建鋒 日期 :2015/6/16 Fundamental Solution Green’s Function Green’s Theorem.
Simulation Basics (模擬基本概念)
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
Chapter 20 塑模動態觀點:狀態圖 Statechart Diagram. 學習目標  說明狀態圖的目的  定義狀態圖的基本記號  展示狀態圖的建構  定義活動、內部事件及遞延事件的狀態 圖記號.
Ch05 確定研究變項.
1 EnergyEnergy 能量. 2 哲音與吟詠 構成宇宙的元素? 構成宇宙的元素? 西方哲學家:亞理斯多德 西方哲學家:亞理斯多德 東方哲人:悉達多 東方哲人:悉達多 科學研究的範疇:(化學) 科學研究的範疇:(化學)
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
機率與分配 樣本空間與機率定義 機率的定義 機率的基本定理 隨機變數(Random Variable) 期望值與變異數 常用的機率分配.
Analysis of Variance (ANOVA) CH 13 變異數分析. What is ANOVA? n 檢定 3 個或 3 個以上的母體平均數是否相等的統計檢定 n 檢定多個母體平均數是否相同 n 比較大二、大三、大四學生實習滿意度是否一樣 ? ( 來 自相同的 population)
7.4 Lookback Options 指導教授:戴天時 報告者:陳博宇. 章節結構 Floating Strike Lookback Black-Scholes-Merton Equation Reduction of Dimension Computation.
第七章 連續機率分配.
工作與失業 CHAPTER 14 學習本章後,您將能: C H A P T E R C H E C K L I S T 定義失業率與其他勞動市場的指標 1 描述失業的原因與型態,定義充分就業,並解釋失業與 實質 GDP 的關係 2.

交流伺服馬達驅動器之製作 指導老師:林志鴻 博士 指導老師:林志鴻 博士 班 級: 四技電四甲 班 級: 四技電四甲 學生姓名: 葉信宏( ) 林展如( ) 林展如( ) 日 期 : 九十六年五月 日 期 : 九十六年五月.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
Chapter 3 Entropy : An Additional Balance Equation
Chapter 10 m-way 搜尋樹與B-Tree
1 ARMA model Let ε t be white noise process, Z t be a stationary series. white noise : 純雜訊 ε t ~ NID( 0, σ 2 ) ARMA model 又稱為 Box-Jankin model , 1970 年代推出,
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
1. 2 什麼是函數? 函數像一個魔術師的戲法箱,適當 “ 輸入 ” 就一定會有 “ 輸出 ” ,而且相同 的輸入必定會得到相同的輸出。
計算機概論 第6章 數位邏輯設計.
連續隨機變數 連續變數:時間、分數、重量、……
Continuous Random Variables and Probability Distributions
Ch05 確定研究變項.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
幼兒行為觀察與記錄 第八章 事件取樣法.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
緣起 數學導論 吳定遠 水牛出版社 What is mathematics, Courant 定點定理 (固定點定理 ;不動點定理 )
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
Exponential Distribution & Poisson Process
1 Exponential Distribution & Poisson Process Memorylessness & other exponential distribution properties; Poisson process and compound P.P.’s.
1 柱體與錐體 1. 找出柱體與錐體的規則 2. 柱體的命名與特性 3. 柱體的展開圖 4. 錐體的命名與特性 5. 錐體的展開圖
Chapter 5 Laplace Transforms
Statistical Distributions
Moment Generating Functions
7-1 Chapter 7 Special Continuous Distributions 7.1 Uniform Random Variable Def: A continuous RV X is said to have a uniform distribution if the pdf of.
Chapter 4-2 Continuous Random Variables 主講人 : 虞台文.
Chapter 5 Expectations 主講人 : 虞台文. Content Introduction Expectation of a Function of a Random Variable Expectation of Functions of Multiple Random Variables.
Chapter 3 Discrete Random Variables 主講人 : 虞台文. Content Random Variables The Probability Mass Functions Distribution Functions Bernoulli Trials Bernoulli.
Chapter 3-2 Discrete Random Variables 主講人 : 虞台文. Content Functions of a Single Discrete Random Variable Discrete Random Vectors Independent of Random.
Topic 5: Continuous Random Variables and Probability Distributions CEE 11 Spring 2002 Dr. Amelia Regan These notes draw liberally from the class text,
Chapter 4 Continuous Random Variables and Probability Distributions  Probability Density Functions.2 - Cumulative Distribution Functions and E Expected.
Chapter 4 Continuous Random Variables and Probability Distributions  Probability Density Functions.2 - Cumulative Distribution Functions and E Expected.
Ch 8 實習.
Introduction to Probability Theory ‧ 2- 1 ‧ Speaker: Chuang-Chieh Lin Advisor: Professor Maw-Shang Chang National Chung Cheng University Dept. CSIE, Computation.
Copyright © Cengage Learning. All rights reserved. 4 Continuous Random Variables and Probability Distributions.
Chapter 4 Continuous Random Variables and Probability Distributions
The Exponential and Gamma Distributions
Chapter 5 Expectations 主講人:虞台文.
Handout Ch 5.
Chapter 4-1 Continuous Random Variables
Presentation transcript:

Chapter 4-1 Continuous Random Variables 主講人 : 虞台文

Content Random Variables and Distribution Functions Probability Density Functions of Continuous Random Variables The Exponential Distributions The Reliability and Failure Rate The Erlang Distributions The Gamma Distributions The Gaussian or Normal Distributions The Uniform Distributions

Random Variables and Distribution Functions Chapter 4-1 Continuous Random Variables

The Temperature in Taipei 今天中午台北市氣溫為 25  C 之機率為何 ? 今天中午台北市氣溫小於 或等於 25  C 之機率為何 ?

Renewed Definition of Random Variables A random variable X on a probability space ( , A, P) is a function X :  R that assigns a real number X(  ) to each sample point , such that for every real number x, the set {  |X(  )  x} is an event, i.e., a member of A.

The (Cumulative) Distribution Functions The (cumulative) distribution function F X of a random variable X is defined to be the function F X (x) = P(X  x), −  < x < .

Example 1

R y

R y

R RYRY R/2

Example 1

Properties of Distribution Functions 1. 0  F(x)  1 for all x ; 2. F is monotonically nondecreasing; 3. F(  ) = 0 and F(  ) =1 ; 4. F(x+) = F(x) for all x.

Definition  Continuous Random Variables A random variable X is called a continuous random variable if

Example 2

Probability Density Functions of Continuous Random Variables Chapter 4-1 Continuous Random Variables

Probability Density Functions of Continuous Random Variables A probability density function (pdf) f X (x) of a continuous random variable X is a nonnegative function f such that

Probability Density Functions of Continuous Random Variables A probability density function (pdf) f X (x) of a continuous random variable X is a nonnegative function f such that

Properties of Pdf's Remark: f(x) can be larger than 1.

Example 3

1/

The Exponential Distributions Chapter 4-1 Continuous Random Variables

The Exponential Distributions The following r.v.’s are often modelled as exponential: 1. Interarrival time between two successive job arrivals. 2. Service time at a server in a queuing network. 3. Life time of a component.

The Exponential Distributions A r.v. X is said to possess an exponential distribution and to be exponentially distributed, denoted by X ~ Exp( ), if it possesses the density

The Exponential Distributions : arriving rate : failure rate pdf cdf

The Exponential Distributions : arriving rate : failure rate pdf cdf

Memoryless or Markov Property

Exercise: 連續型隨機變數中,唯有指數分佈具備無記憶性。

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate NtNt Let r.v. N t denote #jobs arriving to a computer system in the interval (0, t]. t 0

The Relation Between Poisson and Exponential Distributions Let X denote the time of the next arrival. : arriving rate : failure rate The next arrival NtNt Let r.v. N t denote #jobs arriving to a computer system in the interval (0, t]. t 0 X

The Relation Between Poisson and Exponential Distributions Let X denote the time of the next arrival. : arriving rate : failure rate The next arrival NtNt Let r.v. N t denote #jobs arriving to a computer system in the interval (0, t]. t 0 X 能求出 P(X > t) 嗎 ?

The Relation Between Poisson and Exponential Distributions Let X denote the time of the next arrival. : arriving rate : failure rate The next arrival NtNt Let r.v. N t denote #jobs arriving to a computer system in the interval (0, t]. t 0 X 能求出 P(X > t) 嗎 ?

The Relation Between Poisson and Exponential Distributions Let X denote the time of the next arrival. : arriving rate : failure rate NtNt Let r.v. N t denote #jobs arriving to a computer system in the interval (0, t]. t 0 X The next arrival

The Relation Between Poisson and Exponential Distributions : arriving rate : failure rate t1t1 t2t2 t3t3 t4t4 t5t5 The interarrival times of a Poisson process are exponentially distributed.

Example secs = 0.1 job/sec P (“ No job ” ) = ?

Example secs = 0.1 job/sec P (“ No job ” ) = ? Method 1: Method 2: Let N 10 represent #jobs arriving in the 10 secs. Let X represent the time of the next arriving job.

The Reliability and Failure Rate Chapter 4-1 Continuous Random Variables

Definition  Reliability Let r.v. X be the lifetime or time to failure of a component. The probability that the component survives until some time t is called the reliability R(t) of the component, i.e., R(t) = P(X > t) = 1  F(t) Remarks: 1. F(t) is, hence, called unreliability. 2. R ’ (t) =  F ’ (t) =  f(t) is called the failure density function.

The Instantaneous Failure Rate 剎那間,ㄧ切化作永恆。

The Instantaneous Failure Rate 0t tt t+  t 生命將在時間 t 後瞬間結束的機率

The Instantaneous Failure Rate 生命將在時間 t 後瞬間結束的機率

The Instantaneous Failure Rate 瞬間暴斃率 h(t)

The Instantaneous Failure Rate 瞬間暴斃率 h(t)

Example 6 Show that the failure rate of exponential distribution is characterized by a constant failure rate. 以指數分配來 model 物件壽命之機率分配合理嗎 ?

More on Failure Rates t h(t)h(t) CFR

More on Failure Rates t h(t)h(t) CFR Useful Life CFR DFR IFR

More on Failure Rates t h(t)h(t) CFR Useful Life CFR DFR IFR Exponential Distribution Exponential Distribution ??

Relationships among F(t), f(t), R(t), h(t)

? ? ?

Cumulative Hazard

Relationships among F(t), f(t), R(t), h(t)

Example 7

The Erlang Distributions Chapter 4-1 Continuous Random Variables

我的老照相機與閃光燈 它只能使用四次 每使用一次後轉動九十度 使用四次後壽終正寢 它只能使用四次 每使用一次後轉動九十度 使用四次後壽終正寢

time The Erlang Distributions The lifetime of my flash ( X ) I(X)=? f X (t)=? [0,  )

The Erlang Distributions Consider a component subjected to an environment so that N t, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t. Suppose that the r th peak will cause a failure. Let X denote the lifetime of the component. Then, N t ~ P( t) cdf

The Erlang Distributions Consider a component subjected to an environment so that N t, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t. Suppose that the r th peak will cause a failure. Let X denote the lifetime of the component. Then, N t ~ P( t) Exercise of Chapter 2 cdf pdf

The r-Stage Erlang Distributions Consider a component subjected to an environment so that N t, the number of peak stresses in the interval (0, t], is Poisson distributed with parameter t. Suppose that the r th peak will cause a failure. Let X denote the lifetime of the component. Then, cdf pdf

The r-Stage Erlang Distributions cdf pdf

The r-Stage Erlang Distributions pdf

Example 8 In a batch processing environment, the number of jobs arriving for service is 9 per hour. If the arrival process satisfies the requirement of a Poisson experiment. Find the probability that the elapse time between a given arrival and the fifth subsequent arrival is less than 10 minutes. Let X represent the time of the 5 th arrival. = 9 jobs/hr.

The Gamma Distributions Chapter 4-1 Continuous Random Variables

Review pdf r 為一正整數 欲將之推廣為正實數 r 為一正整數 欲將之推廣為正實數

Review pdf   

The Gamma Distributions pdf

Review

Chi-Square Distributions

The Gaussian or Normal Distributions Chapter 4-1 Continuous Random Variables

The Gaussian or Normal Distributions 德國的 10 馬克紙幣, 以高斯 (Gauss, ) 為 人像, 人像左側有一常態分佈之 p.d.f. 及其圖形。

The Gaussian or Normal Distributions pdf

The Gaussian or Normal Distributions  : mean  : standard deviation  2 : variance Inflection point Inflection point

The Gaussian or Normal Distributions  : mean  : standard deviation  2 : variance varying  varying 

The Gaussian or Normal Distributions  : mean  : standard deviation  2 : variance Facts:

The Gaussian or Normal Distributions  : mean  : standard deviation  2 : variance

Standard Normal Distribution

Table of N(0, 1) z

z Fact:

Probability Evaluation for N( ,  2 ) x 

x 

x  Fact:

Example 9 X ~ N(12.00, )

Example 9 X ~ N(12.00, )

Example 9 X ~ N(12.00, )

Example 9 X ~ N(12.00, )

Example 10  |X   | <  |X   | < 2  |X   | < 3 

Example 10

The Uniform Distributions Chapter 4-1 Continuous Random Variables

The Uniform Distributions pdf cdf ab x f(x)f(x) ab x F(x)F(x) 1

Summary The Exponential Distributions The Erlang Distributions The Gamma Distributions The Gaussian or Normal Distributions The Uniform Distributions