Discrete Mathematics Chapter 1 The Foundations : Logic and Proofs, Sets, and Functions 大葉大學 資訊工程系 黃鈴玲.

Slides:



Advertisements
Similar presentations
Propositional Equivalences
Advertisements

1. Propositions A proposition is a declarative sentence that is either true or false. Examples of propositions: The Moon is made of green cheese. Trenton.
2009/91 Predicates and Quantifiers (§1.3) In the sentence “x is greater than 3”: The phrase “x” denotes the subject - the object or entity that the sentence.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
1 集合論 Chapter 3. 2 Chapter 3 Set Theory 3.1 Sets and Subsets A well-defined collection of objects (the set of outstanding people, outstanding is very.
T-SQL 運算子介紹 11/29. 運算子的總類 指定運算子 算術運算子 比較運算子 邏輯運算子 位元運算子 字串連結運算子 單一運算元運算子.
如何將數字變成可用之資訊 現代化資料處理與應用概念. 如何將數字變成可用之資訊 人最容易接受的訊息是圖像化資訊。 在一堆數字中,要進行比較分析,一般會使用表格形 式計算與分析。 所以一般我們會將數字依關聯性, 轉換成表格計算與分析。 此表格一般稱試算表或稱表格。 再將結果轉換為圖表,進行比較與分析。
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
Logic Chapter 2. Proposition "Proposition" can be defined as a declarative statement having a specific truth-value, true or false. Examples: 2 is a odd.
Chapter 2 聯立線性方程式與矩陣 緒言 線性方程式組 (systems of linear equations) 出現 在多數線性模式 (linear model) 中。根據以往解 題的經驗,讀者們也許已發現方程式的解僅與 該方程式的係數有關,求解的過程也僅與係數 的運算有關,只要係數間的相關位置不改變,
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
Chapter 2 Fundamentals of Logic
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
2/17/2008Sultan Almuhammadi1 ICS Logic & Sets (An Overview) Week 1.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
1 Math 306 Foundations of Mathematics I Math 306 Foundations of Mathematics I Goals of this class Introduction to important mathematical concepts Development.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 10 m-way 搜尋樹與B-Tree
Discrete Mathematics Math 6A Instructor: M. Welling.
計算機概論 第6章 數位邏輯設計.
1 Introduction to Java Programming Lecture 3 Mathematical Operators Spring 2008.
First Order Logic. Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
Set Theory Sets 許多數學上的討論中(例如: algebra 、 analysis 、 geometric 等等) 經常藉助集合論中的符號或術語來說 明。集合論是十九世紀後期由 Boole ( 布爾; 1815~1864) 及 Cantor ( 康托爾; 1845 ~ 1918) 所發展出來的。
1 Introduction to Java Programming Lecture 3 Mathematical Operators Spring 2009.
1 Discrete and Combinatorial Mathematics R. P. Grimaldi, 5 th edition, 2004 Chapter 3 Set Theory.
Chapter 1, Part I: Propositional Logic With Question/Answer Animations.
The Foundations: Logic and Proofs
Discrete Mathematics Goals of a Discrete Mathematics Learn how to think mathematically 1. Mathematical Reasoning Foundation for discussions of methods.
Chapter 2 – Fundamentals of Logic. Outline Basic Connectives and Truth Tables Logical Equivalence: The Laws of Logic Ligical Implication: Rules of Inference.
The Foundations: Logic and Proofs
Course Outline Book: Discrete Mathematics by K. P. Bogart Topics:
Discrete Mathematics and Its Applications
CS 285- Discrete Mathematics Lecture 2. Section 1.1 Propositional Logic Propositions Conditional Statements Truth Tables of Compound Propositions Translating.
Discrete Mathematics Chapter 1 The Foundations : Logic and Proofs 大葉大學 資訊工程系 黃鈴玲 (Lingling Huang)
BY: MISS FARAH ADIBAH ADNAN IMK. CHAPTER OUTLINE: PART III 1.3 ELEMENTARY LOGIC INTRODUCTION PROPOSITION COMPOUND STATEMENTS LOGICAL.
Chapter 5 – Logic CSNB 143 Discrete Mathematical Structures.
Discrete Mathematics Chapter 7 Advanced Counting Techniques 大葉大學 資訊工程系 黃鈴玲.
Fall 2002CMSC Discrete Structures1 Let’s get started with... Logic !
Discrete Mathematics Lecture1 Miss.Amal Alshardy.
Discrete Mathematics and Its Applications Sixth Edition By Kenneth Rosen Copyright  The McGraw-Hill Companies, Inc. Permission required for reproduction.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Chapter 7 Review Important Terms, Symbols, Concepts 7.1. Logic A proposition is a statement (not a question.
CSNB143 – Discrete Structure LOGIC. Learning Outcomes Student should be able to know what is it means by statement. Students should be able to identify.
Discrete Mathematics Chapter 2 Basic Structures : Sets, Functions, Sequences, and Sums 大葉大學 資訊工程系 黃鈴玲 (Lingling Huang)
Faculty of ENGINEERING | Chulalongkorn University Discrete Structures Department of Computer Engineering DISCRETE STRUCTURE.
資訊科學數學 4 : More About Logic 陳光琦助理教授 (Kuang-Chi Chen)
January 30, 2002Applied Discrete Mathematics Week 1: Logic and Sets 1 Let’s Talk About Logic Logic is a system based on propositions.Logic is a system.
2.5 The proofs of theorems 證明方法 p → q 與 p  q 之應用 Definition 2.8 Let n be an integer. We call n even if n is divisible by 2 - that is, if there exists.
Discrete Mathematics Chapter 7 Relations 感謝 大葉大學 資訊工程系 黃鈴玲老師 提供.
Chapter 1: The Foundations: Logic and Proofs
Discrete Mathematics Section 3.7 Applications of Number Theory 大葉大學 資訊工程系 黃鈴玲.
Section 1.1. Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth.
Logical Operations – Page 1CSCI 1900 – Discrete Structures CSCI 1900 Discrete Structures Logical Operations Reading: Kolman, Section 2.1.
CSNB143 – Discrete Structure Topic 4 – Logic. Learning Outcomes Students should be able to define statement. Students should be able to identify connectives.
Sets Definition: A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a.
CSci 2011 Recap ^Propositional operation summary not andorconditionalBi-conditional pq ppqqpqpqpqpqpqpqpqpq TTFFTTTT TFFTFTFF FTTFFTTF FFTTFFTT.
رياضيات متقطعة لعلوم الحاسب MATH 226. Text books: (Discrete Mathematics and its applications) Kenneth H. Rosen, seventh Edition, 2012, McGraw- Hill.
Section 1.1. Propositions A proposition is a declarative sentence that is either true or false. Examples of propositions: a) The Moon is made of green.
Introduction to Discrete Mathematics Discrete Mathematics: is the part of mathematics devoted to the study of discrete objects. Discrete Mathematics is.
Chapter 1. Chapter Summary  Propositional Logic  The Language of Propositions (1.1)  Logical Equivalences (1.3)  Predicate Logic  The Language of.
Chapter 1 Logic and proofs
Niu Kun Discrete Mathematics Chapter 1 The Foundations: Logic and Proof, Sets, and Functions Niu Kun 离散数学.
Logic Logic is a discipline that studies the principles and methods used to construct valid arguments. An argument is a related sequence of statements.
Presentation transcript:

Discrete Mathematics Chapter 1 The Foundations : Logic and Proofs, Sets, and Functions 大葉大學 資訊工程系 黃鈴玲

2 1-1 Logic Def : A proposition ( 命題 ) is a statement that is either true or false, but not both. Example 1 : The following statements are propositions. (1) Toronto is the capital of Canada. (F) (2) = 2 (T) Example 2 : Consider the following sentences. (1) what time is it ? (not statement) (2) Read this carefully. (not statement) (3) x + 1 = 2 (neither true nor false)

3 Logical operators ( 邏輯運算子 ) and truth table ( 真值表 ) Table 1. The truth table for the Negation (not) of a Proposition eg. p : “ Today is Friday.” ﹁ p : “ Today is not Friday.” Def : A truth table displays the relationships between the truth values of propositions. Table 2. The truth table for the Conjunction (and) of two propositions. eg. p : “ Today is Friday.” q : “ It’s raining today. ” p  q : “ Today is Friday and it’s raining today. “ pq p  q TTT TFF FTF FFF p ﹁ p TF FT

4 Table 3. The truth table for the Disjunction (or) of two propositions. eg. p : “ Today is Friday. “ q : “ It’s raining today. “ p  q : “ Today is Friday or it’s raining today. “ Table 4. The truth table for the Exclusive or (xor) of two propositions. pq p  q TTT TFT FTT FFF pq p ⊕ q TTF TFT FTT FFF

5 Table 5. The truth table for the Implication (p implies q) p → q. ( 觀念 : 若 p 對,則 q 一定要對 若 p 錯,則對 q 不做要求 ) eg. p : “ You make more than $25000 ” q : “ You must file a tax return. “ p → q : “ If you make more … then you must …. “ Some of the more common ways of expressing this implication are : (1) if p then q ( 若 p 則 q , p 是 q 的充分條件 ) (2) p implies q (3) p only if q ( 只有 q 是 True 時, p 才可能是 True , 若 q 是 False ,則 p 一定是 False) pqp → q TTT TFF FTT FFT

6 Def : In the implication p → q, p is called the hypothesis ( 假設 )and q is called the conclusion ( 結論 ). Def : Compound propositions ( 合成命題 ) are formed from existing propositions using logical operators. ( 即  、  、 ⊕、 → 等 ) Table 6. The truth table for the Biconditional p ↔ q ( p → q and q → p ) “ p if and only if q “ “ p iff q “ “ If p then q, and conversely.” pqp → qq → pp ↔ q TTTTT TFFTF FTTFF FFTTT ( 若且唯若 )

7 Example 9 : How can the following English sentence be translated into a logical expression ? “ You can access the Internet from campus only if you are a computer science major or you are not a freshman. ” Sol : p : “ You can access the Internet from campus. “ q : “ You are a computer science major. “ r : “ You are a freshman. “ ∴ p only if ( q or ( ﹁ r )) => p → ( q  ( ﹁ r )) Translating English Sentences into Logical Expression

8 Example 10 : You cannot ride the roller coaster ( 雲霄飛 車 ) if you are under 4 feet tall unless you are older than 16 years old. Sol : q : “ You can ride the roller coaster. “ r : “ You are under 4 feet tall. “ s : “ You are older than 16 years old. “ ∴ ﹁ q if r unless s ∴ ( r  ﹁ s ) → ﹁ q Table 7. Precedence of Logical Operators eg. (1) p  q  r means ( p  q )  r (2) p  q → r means ( p  q ) → r (3) p  ﹁ q means p  ( ﹁ q ) Exercise : 9 、 13 、 25 、 27 、 30 OperatorPrecedence ﹁ 1  2  3 →4  5

9 1-2 Propositional Equivalences Def : A compound proposition that is always true is called a tautology. ( 真理 ) A compound proposition that is always false is called a contradiction. ( 矛盾 ) Example 1 : Def : The propositions p and q that have the same truth values in all possible cases are called logically equivalent. The notation p ≡ q ( or p  q ) denotes that p and q are logically equivalent. p ﹁p﹁pp  ﹁ pp  ﹁ p T F T F F T T F

10 Example 2 : Show that ﹁ ( p  q ) ≡ ﹁ p  ﹁ q pf : ※ Some important logically equivalences (Table 5) (1) p  q ≡ q  p (2) p  q ≡ q  p (3) ( p  q )  r ≡ p  (q  r ) (4) ( p  q )  r ≡ p  (q  r ) (5) p  ( q  r ) ≡ ( p  q )  ( p  r ) (6) p  ( q  r ) ≡ ( p  q )  ( p  r ) ((5) 、 (6) 的觀念類似於 (a + b) x c = (a x c ) + (b x c)) pq ﹁ ( p  q ) ﹁p﹁p ﹁q﹁q ﹁ p  ﹁ q TTFFFF TFFFTF FTFTFF FFTTTT commutative laws. 交換律 associative laws. 結合律 distributive laws 分配律

11 (7) ﹁ ( p  q ) ≡ ﹁ p  ﹁ q (8) ﹁ ( p  q ) ≡ ﹁ p  ﹁ q (9) p  ﹁ p ≡ T (10) p  ﹁ p ≡ F (11) p → q ≡ ﹁ p  q Example 5 : Show that ﹁ ( p  ( ﹁ p  q )) ≡ ﹁ p  ﹁ q pf : ( 也可用真值表証 ) ﹁ ( p  ( ﹁ p  q ) ) ≡ ﹁ p  ﹁ ( ﹁ p  q ) ≡ ﹁ p  ( p  ﹁ q ) ≡ ( ﹁ p  p )  ( ﹁ p  ﹁ q ) ≡ F  ( ﹁ p  ﹁ q ) ≡ ﹁ p  ﹁ q De Morgan’s laws by (8) by (7) by (6) by (10)

12 Example 6 : Show ( p  q ) → (p  q) is a tautology. pf : ( p  q ) → (p  q) ≡ ﹁ ( p  q )  (p  q ) ≡ ( ﹁ p  ﹁ q )  (p  q ) ≡ ( ﹁ p  p )  ( ﹁ q  q ) ≡ T  T ≡ T Exercise : 7 、 9 、 17 By (3) By (11) By (7)

Predicates and Quantifiers 目標 : 了解 “ ∀ “ 及 “ ∃ “ 符號 Def : The statement P(x) is said to be the value of the propositional function P at x. ex : P(x) : “ x is greater than 3 “ ※命題中出現變數 x 時 the universe of discourse (or domain) of x 指的是 x 的範圍 ※ Quantifiers : ( 數量詞,如 some , any , all 等 ) ∀ : universal quantifier ( for all ) ∃ : existential quantifier ( there exist, there is, for some ) variable predicate 屬性數量詞

14 Table 1. Quantifiers Example 13 : Let P(x) : x 2 > 10, when x ∈, x ≤ 4 What is the truth value of ∃ x P(x) ? Sol : x ∈ {1, 2, 3, 4} ∴ 4 2 = 16 > 10 ∴ ∃ x P(x) is true. StatementWhen True ?When False ? ∀ x P(x) P(x) is true for every x. There is an x for which P(x) is false. ∃ x P(x) There is an x for which P(x) is true. P(x) is false for every x. +

15 Table 2. Negating Quantifiers. Example 16 : P(x) : x 2 > x, Q(x) : x 2 = 2, what is the negations of ∀ x P(x) and ∃ x Q(x) ? Sol : ﹁∀ x P(x) ≡ ∃ x ﹁ P(x) ≡ ∃ x (x 2 ≤ x) ﹁∃ x Q(x) ≡ ∀ x ﹁ Q(x) ≡ ∀ x (x 2 ≠ x) Exercise : 11 、 13 、 15 、 49 NegationEquivalent Statement When True ?When False ? ﹁∃ x P(x) ∀ x ﹁ P(x) P(x) is false for every x. ∃ x, s.t. P(x) is true. ﹁∀ x P(x) ∃ x ﹁ P(x) ∃ x, s.t. P(x) is false P(x) is true for every x.

16 補充 : 習題 48 “ ∃ ! ” 表示 “ 存在且唯一 “ ∃ !x P(x) 表示 “ There exists a unique x s.t. P(x) is true. ” Example : What is the truth values of the statements (a) ∃ ! x ( x 2 = 1 ) (b) ∃ ! x ( x + 3 = 2x ) where the universe of discourse is the set of integers. ( 即 x ∈ ) Ans : (a) 1 2 = 1, (-1) 2 =1 (b) True.

Nested Quantifiers eg. ∀ x ∃ y (x + y = 0 ) Table 2. Quantifications of Two Variables. StatementWhen true ?When False ? ∀ x ∀ y P(x,y) ∀ y ∀ x P(x,y) P(x,y) is true for every pair x,y. ① ∃ a pair (x,y) s.t. P(x,y) is false. ③ ∀ x ∃ y P(x,y)For every x, ∃ y s.t. P(x,y) is true. ② ∃ x, s.t. P(x,y) is false for every y. ④ ∃ x ∀ y P(x,y) There is an x for which P(x,y) is true for every y. ③ For every x, ∃ y s.t. P(x,y) is false. ② ∃ x ∃ y P(x,y) ∃ y ∃ x P(x,y) ∃ a pair (x,y) s.t. P(x,y) is true. ③ ∀ pair (x,y), P(x,y) is false. ⑤ 例 : ① p(x,y) : x + y ≥0, x,y ∈ N ③ p(x,y) : xy = 0, x,y ∈ Z ② p(x,y) : x + y = 2, x,y ∈ Z ④ p(x,y) : xy = -1, x,y ∈ Z ⑤ p(x,y) : x + y = ½, x,y ∈ Z Exercise: 27

Sets Def 1 : A set is an unordered collection of objects. Def 2 : The objects in a set are called the elements, or members of the set. Example 4 : 常見的重要集合 N = { 0,1,2,3,…}, the set of natural number ( 自然數 ) Z = { …,-2,-1,0,1,2,…}, the set of integers ( 整數 ) Z + = { 1,2,3,…}, the set of positive integers ( 正整數 ) Q = { p / q | p ∈ Z, q ∈ Z, q≠0 }, the set of rational numbers ( 有理數 ) R = the set of real numbers ( 實數 ) ( 元素可表示成 等小數形式 )

19 Def 4 : A ⊆ B iff ∀ x, x ∈ A → x ∈ B 補充: A ⊂ B 表示 A ⊆ B 但 A ≠ B Def 5 : S : a finite set The cardinality of S, denoted by |S|, is the number of elements in S. Def 7 : S : a set The power set of S, denoted by P(S), is the set of all subsets of S. Example 11 : S = {0,1,2} P(S) = { , {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2} } Def : A, B : sets The Cartesian Product of A and B, denoted by A x B, is the set A x B = { (a,b) | a ∈ A and b ∈ B }

20 Note. |A x B| = |A| . |B| Example 14 : A = {1,2}, B = {a, b, c} A x B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)} Exercise : 5 、 7 、 8 、 13 、 17 、 19

Set Operations Def 1,2,4 : A,B : sets A ∪ B = { x | x  A or x  B } (union) A∩B = { x | x  A and x  B } (intersection) A – B = { x | x  A and x  B } ( 也常寫成 A \ B) Def 3 : Two sets A,B are disjoint if A∩B =  Def 5 : Let U be the universal set. The complement of the set A, denoted by A, is the set U – A. Example 10 : Prove that A∩B = A ∪ B pf : 稱為 Venn Diagram

22 Def 6 : A 1, A 2, …, A n : sets Let I = {1,3,5}, Def : (p.95 右邊 ) A,B : sets The symmetric difference of A and B, denoted by A ⊕ B, is the set { x | x  A  B or x  B  A } = ( A ∪ B )  ( A ∩B ) ※ Inclusion – Exclusion Principle ( 排容原理 ) |A ∪ B| = |A| + |B|  |A ∩ B| Exercise : 10,37

Functions Def 1 : A,B : sets A function f : A → B is an assignment of exactly one element of B to each element of A. We write f (a) = b if b is the unique element of B assigned by f to a ∈ A. eg. ABAB α β γ α β γ Not a function

24 Def : ( 以 f : A→B 為例,右上圖 ) f (α) = 1, f (β) = 4, f (γ) = 2 1 稱為 α 的 image ( 必唯一 ), α 稱為 1 的 pre-image( 可能不唯一 ) A : domain of f, B : codomain of f range of f = { f (a) | a ∈ A} = f (A) = {1,2,4} ( 未必 =B) Example 2 : f : Z → Z, f (x) = x 2, 則 f 的 domain, codomain 及 range ? AB 1 2 α β γ AB α β γ 4 a function

25 Example 4 : Let f 1 : R → R and f 2 : R → R s.t. f 1 (x) = x 2, f 2 (x) = x - x 2, What are the function f 1 + f 2 and f 1 f 2 ? Sol : ( f 1 + f 2 )(x) = f 1 (x) + f 2 (x) = x 2 + ( x – x 2 ) = x ( f 1 f 2 )(x) = f 1 (x) . f 2 (x) = x 2 ( x – x 2 ) = x 3 – x 4 Def : A function f is said to be one-to-one, or injective, iff f (x) ≠ f (y) whenever x ≠ y. Example 6 : AB 1 2 a b c AB 1 2 a b c d d 是 1-1 不是 1-1, 因 g (a) = g (d) = 4 f g

26 Example 8 : Determine whether the function f (x) = x + 1 is one-to-one ? Sol : x ≠ y  x + 1 ≠ y + 1  f (x) ≠ f (y) ∴ f is 1-1 Def 7 : A function f : A → B is called onto, or surjective, iff for every element b ∈ B, ∃ a ∈ A with f (a) = b. ( 即 B 的所有 元素都被 f 對應到 ) Example 9 : Note : 當 |A| < |B| 時, 必定不會 onto. noto a b c d f not noto AB a b c f

27 Def 8 : The function f is a one-to-one correspondence, or a bijection, if it is both 1-1 and onto. Examples in Fig 5 ※補充 : f : A →B (1) If f is 1-1, then |A| ≤ |B| (2) If f is onto, then |A| ≥ |B| (3) if f is 1-1 and onto, then |A| = |B|. 1-1, onto a b c not 1-1, onto a b c d 1-1 and onto a b c d

28 ※ Some important functions Def 12 : floor function : x : ≤ x 的最大整數,即 [ x ] ceiling function : x : ≥ x 的最小整數. Example 21 : ½ = -½ = 7 = Example 26 : factorial function : f : N → Z +, f ( n ) = n ! = 1 x 2 x … x n Exercise : 1,12,17,19