Alfonso Mantero, INFN Genova Models for the Simulation of X-Ray Fluorescence and PIXE A. Mantero, S. Saliceti, B. Mascialino, Maria Grazia Pia INFN Genova,

Slides:



Advertisements
Similar presentations
Maria Grazia Pia, INFN Genova Precision Electromagnetic Physics in Geant4: the Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia, S.
Advertisements

Maria Grazia Pia, INFN Genova Test & Analysis Project Maria Grazia Pia, INFN Genova on behalf of the T&A team
Maria Grazia Pia, INFN Genova Conceptual challenges and computational progress in X-ray simulation Maria Grazia Pia INFN Genova, Italy Maria Grazia Pia.
Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Maria Grazia Pia, INFN Genova Geant4 Physics Validation (mostly electromagnetic, but also hadronic…) K. Amako, S. Guatelli, V. Ivanchenko, M. Maire, B.
Ion beam Analysis Joele Mira from UWC and iThemba LABS Tinyiko Maluleke from US Supervisor: Dr. Alexander Kobzev Dr. Alexander Kobzev.
Maria Grazia Pia, INFN Genova PhysicsLists in Geant4 Advanced Examples Geant4.
Simulation of X-ray Fluorescence and Application to Planetary Astrophysics A. Mantero, M. Bavdaz, A. Owens, A. Peacock, M. G. Pia IEEE NSS -- Portland,
Maria Grazia Pia, INFN Genova Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia INFN Genova, Italy P. Nieminen ESA/ESTEC
Test Beam Simulation for ESA BepiColombo Mission Marcos Bavdaz, Alfonso Mantero, Barbara Mascialino, Petteri Nieminen, Alan Owens, Tone Peacock, Maria.
Hee Seo, Chan-Hyeung Kim, Lorenzo Moneta, Maria Grazia Pia Hanyang Univ. (Korea), INFN Genova (Italy), CERN (Switzerland) 18 October 2010 Design, development.
Low Energy Electromagnetic Physics
Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE.
S. Guatelli IEEE 2004 – NSS - Rome Dosimetry for Interplanetary Missions: the Geant4 REMSIM application S. Guatelli 1, P. Nieminen 2, M.G. Pia 1 IEEE NSS,
Barbara Mascialino, INFN Genova An update on the Goodness of Fit Statistical Toolkit B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Max-Planck-Institut für extraterrestrische Physik and Halbleiterlabor, Germany Space Sciences Lab., UC Berkeley, USA CNES, Toulouse, France INFN Genova.
Maria Grazia Pia, INFN Genova Geant4 Physics Validation Geant4 Space User Workshop Pasadena, 6-10 November 2006 M.G. Pia On behalf of the LowE EM and Advanced.
20 February 2002Geant4 Users' Workhsop, SLAC1 Low-Energy Electromagnetic Processes in P. Nieminen (ESA-ESTEC)
Applications of Geant4 Geant4 Mini-Tutorial Hebden Bridge 15 September 2007 Joseph Perl, SLAC (mostly stolen from a talk by Makoto Asai)
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova
Maria Grazia Pia, INFN Genova – CHEP 2001 ow Energy Electromagnetic Physics ow Energy Electromagnetic Physics S. Chauvie,G. Depaola, F. Longo, V. Ivanchenko,
Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.
Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic.
Maria Grazia Pia Systematic validation of Geant4 electromagnetic and hadronic models against proton data Systematic validation of Geant4 electromagnetic.
Physics data management tools: computational evolutions and benchmarks Mincheol Han 1, Chan-Hyeung Kim 1, Lorenzo Moneta 2, Maria Grazia Pia 3, Hee Seo.
Highlights of users applications To provide you some ideas how Geant4 would be utilized …
Summary of Work Zhang Qiwei INFN - CIAE. Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases.
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova on behalf of the Low Energy Electromagnetic.
Precision Analysis of Electron Energy Deposition in Detectors Simulated by Geant4 M. Bati č, S. Granato, G. Hoff, M.G. Pia, G. Weidenspointner 2012 NSS-MIC.
Geant4 Workshop 2004 Maria Grazia Pia, INFN Genova Physics Book Maria Grazia Pia INFN Genova on behalf of the Physics Book Team
REMSIM Radiation Exposure and Mission Strategies for Interplanetary Manned Missions Susanna Guatelli, 9 th March 2004, Genova, Italy
IEEE NSS 2012 IEEE NSS 2007 Honolulu, HI Best Student Paper (A. Lechner) IEEE TNS April 2009 Same geometry, primary generator and energy deposition scoring.
Maria Grazia Pia, INFN Genova New Physics Data Libraries for Monte Carlo Transport Maria Grazia Pia 1, Lina Quintieri 2, Mauro Augelli 3, Steffen Hauf.
6 October 2005 Geant4 Workshop, Leuven, Belgium Geant4 Model of SIXS Particle Instrument and Preliminary Simulation Results Lehti, J. (ASRO) Valtonen,
Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),
Geant4 Space User Workshop 2004 Maria Grazia Pia, INFN Genova Proposal of a Space Radiation Environment Generator interfaced to Geant4 S. Guatelli 1, P.
ENDF/B-VI Coupled Photon-Electron Data for Use in Radiation Shielding Applications by Dermott E. Cullen Lawrence Livermore National Laboratory & Robert.
2. RUTHERFORD BACKSCATTERING SPECTROMETRY Basic Principles.
Maria Grazia Pia, INFN Genova 1 New models for PIXE simulation with Geant4 CHEP 2009 Prague, March 2009 Maria Grazia Pia INFN Genova G. Weidenspointner,
Validation of inner shell ionization cross sections for electron transport Sung Hun, Kim Nuclear Engineering, Hanyang University, Seoul, Republic of Korea.
Maria Grazia Pia, INFN Genova Update on the Goodness of Fit Toolkit M.G. Pia B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
Test Beam Simulation for ESA BepiColombo Mission Marcos Bavdaz, Alfonso Mantero, Barbara Mascialino, Petteri Nieminen, Alan Owens, Tone Peacock, Maria.
Physics Data Libraries: Content and Algorithms for Improved Monte Carlo Simulation Physics data libraries play an important role in Monte Carlo simulation:
Barbara MascialinoMonte Carlo 2005Chattanooga, April 19 th 2005 Monte Carlo Chattanooga, April 2005 B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon,
BEPICOLOMBO MERCURY MISSION. The main questions about Mercury Why Mercury is so dense? What is the geological history of Mercury? What is the structure.
Upgrade of G4Penelope models Luciano Pandola INFN – LNGS for the Geant4 EM Working Groups 15 th Geant4 Workshop, ESTEC, October 4 th -8 th, 2010.
20 September 1999Geant4 Workshop1 in Space : Examples of Past and Future Missions and Experiments P. Nieminen, ESA/ESTEC, The Netherlands.
Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases Zhang Qiwei INFN-LNS/CIAE 14th Geant4 Users and Collaboration.
Maria Grazia Pia, INFN Genova and CERN1 Geant4 highlights of relevance for medical physics applications Maria Grazia Pia INFN Genova and CERN.
Forschungszentrum Karlsruhe Erice, 7th July th International School for Cosmic Rays Astrophysics Motivation Energy Reconstruction Air Fluorescence.
Pedro Brogueira 1, Patrícia Gonçalves 2, Ana Keating 2, Dalmiro Maia 3, Mário Pimenta 2, Bernardo Tomé 2 1 IST, Instituto Superior Técnico, 2 LIP, Laboratório.
Highlights of users applications
Models for the Simulation of X-Ray Fluorescence and PIXE
and 9 February 2000 CHEP2000 ESA Space Environment &
A Statistical Toolkit for Data Analysis
Test Beam Simulation for ESA BepiColombo Mission
and 9 February 2000 CHEP2000 ESA Space Environment &
Geant4: Electromagnetic Processes 3 V.Ivanchenko, BINP & CERN
P. Nieminen, E. Daly, A. Mohammadzadeh, H.D.R. Evans, G. Santin
Data analysis in HEP: a statistical toolkit
ION BEAM ANALYSIS.
B.Mascialino, A.Pfeiffer, M.G.Pia, A.Ribon, P.Viarengo
Hadronic physics validation of Geant4
An update on the Goodness of Fit Statistical Toolkit
GEANT Simulations and Track Reconstruction
Low-Energy Electromagnetic Processes in
Precision validation of Geant4 electromagnetic physics
Data analysis in HEP: a statistical toolkit
Presentation transcript:

Alfonso Mantero, INFN Genova Models for the Simulation of X-Ray Fluorescence and PIXE A. Mantero, S. Saliceti, B. Mascialino, Maria Grazia Pia INFN Genova, Italy NSS, Rome, 21 October 2004

Alfonso Mantero, INFN Genova Courtesy ESA Space Environment & Effects Analysis Section X-Ray Surveys of Asteroids and Moons Induced X-ray line emission: indicator of target composition (~100  m surface layer) Cosmic rays, jovian electrons Geant3.21 ITS3.0, EGS4 Geant4 Solar X-rays, e, p Courtesy SOHO EIT C, N, O line emissions included Fluorescence Emission Original motivation from astrophysics requirements Wide field of applications beyond astrophysics

Alfonso Mantero, INFN Genova X-ray fluorescence and Auger effect Calculation of shell cross sections –Based on Livermore (EPDL) Library for photoelectric effect –Based on Livermore (EEDL) Library for electron ionisation –Based on Penelope model for Compton scattering Detailed atom description and calculation of the energy of generated photons/electrons –Based on Livermore EADL Library –Production threshold as in all other Geant4 processes, no photon/electrons generated and local energy deposit if the transition predicts a particle below threshold

Alfonso Mantero, INFN Genova Test process Unit, integration and system tests Verification of direct physics results against established references Comparison of simulation results to experimental data from test beams –Pure materials –Complex composite materials Quantitative comparison of simulation/experimental distributions with rigorous statistical methods –Parametric and non-parametric analysis

Alfonso Mantero, INFN Genova Verification: X-ray fluorescence Transition Probability Energy (eV) K L K L K M K M L2 M L2 M L3 M L3 M K  transition K  transition Transitions (Fe) Comparison of monocromatic photon lines generated by Geant4 Atomic Relaxation w.r.t. reference tables (NIST)

Alfonso Mantero, INFN Genova Verification: Auger effect Auger electron lines from various materials w.r.t. published experimental results eV (367) , eV (430 unresolved) , eV (437 unresolved) Precision: 0.74 % ± 0.07 Cu Auger spectrum

Alfonso Mantero, INFN Genova Test beam at Bessy Advanced Concepts and Science Payloads A. Owens, A. Peacock Si GaAs FCM beamline Si reference XRF chamber Complex geological materials Hawaiian basalt Icelandic basalt Anorthosite Dolerite Gabbro Hematite

Alfonso Mantero, INFN Genova Comparison with experimental data statistically compatible 95% C.L. Experimental and simulated X-ray spectra are statistically compatible at 95% C.L. Ac (95%) = Anderson Darling test Beam Energy A Effects of detector response function + presence of trace elements Pearson correlation analysis: r>0.93 p<0.0001

Alfonso Mantero, INFN Genova PIXE Calculation of cross sections for shell ionization induced by protons or ions Two models available in Geant4: –Theoretical model by Grizsinsky – intrinsically inadequate –Data-driven model, based on evaluated data library by Paul & Sacher (compilation of experimental data complemented by calculations from EPCSSR model by Brandt & Lapicki) Generation of X-ray spectrum based on EADL –Uses the common de-excitation package

Alfonso Mantero, INFN Genova PIXE – Cross section model Fit to Paul & Sacher data library; results of the fit are used to predict the value of a cross section at a given proton energy –allow extrapolations to lower/higher E than data compilation First iteration, Geant4 6.2 (June 2004) –The best fit is with three parametric functions for different groups of elements –6 ≤ Z ≤ 25 –26 ≤ Z ≤ 65 –66 ≤ Z ≤ 99 Second iteration, Geant4 7.0 (December 2004) –Refined grouping of elements and parametric functions, to improve the model at low energies Next: protons, L shell ions, K shell

Alfonso Mantero, INFN Genova Quality of the PIXE model How good is the regression model adopted w.r.t. the data library? Goodness of model verified with analysis of residuals and of regression deviation –Multiple regression index R 2 –ANOVA –Fisher’s test Results (from a set of elements covering the periodic table) –1 st version (Geant4 6.2): average R –2 nd version (Geant4 7.0): average R 2 improved to 99.9 at low energies –p-value from test on the F statistics < in all cases Residual deviation Total deviation Regression deviation Test statistics Fisher distribution

Alfonso Mantero, INFN Genova Bepi Colombo Mission to Mercury Study of the elemental composition of Mercury by means of X-ray fluorescence and PIXE Insight into the formation of the Solar System (discrimination among various models)

Alfonso Mantero, INFN Genova A Library For Simulated X-Ray Emission form Planetry Surfaces A. Mantero, S. Saliceti, B. Mascialino, Maria Grazia Pia INFN Genova, Italy A.Owens, ESA NSS, Rome, 21 October 2004

Alfonso Mantero, INFN Genova The BepiColombo Mission to Mercury Composed of 2 orbiters carrying a total of 25 scientific experiments: ● Magnetic Field Study ● Planet Surface Mapping ● Planet Surface Composition study ● 4 spectrometer (IR, X, , n) ● 1 laser altimeter HERMES Is an X-Ray spectrometer to measure the composition of the upper layers of planetary surface

Alfonso Mantero, INFN Genova X-Ray Detectors Gas Detectors Poor resolution - “< 5.95 KeV” Poor efficiency at low energies Only for some elements K  lines can be detected ( Mg, Al, Si, S, Ca, Ti, and Fe) Solid State Detectors Better Resolution KeV” Greater Efficiency at low Energies Faster count speed Basalt fluorescence spectrum Beam Energy 9.5 KeV Counts Energy (KeV)

Alfonso Mantero, INFN Genova Rocks X-Ray Emission Library ● Space missions are risky, so solid strategies for risk mitigation are to be undertaken ● HERMES is an X-Ray spectrometer studying Mercury's surface composition ● Solid state detector have a better definition than “normal” gas-filled proportional counters ● We will measure detailed X-Ray spectra leading to detailed elemental composition of the crust of the planet ● Space missions are risky, so solid strategies for risk mitigation are to be undertaken ● HERMES is an X-Ray spectrometer studying Mercury's surface composition ● Solid state detector have a better definition than “normal” gas-filled proportional counters ● We will measure detailed X-Ray spectra leading to detailed elemental composition of the crust of the planet We need to study possible responses of the instruments before they are in flight with a very good precision for all the possible situations they can find

Alfonso Mantero, INFN Genova Rocks X-Ray Emission Library Test beams at BESSY labs have been undertaken in order to provide a set of X-Ray spectra from PSSL rocks that could be found rocky planets (Mars, Venus, Mercury) Si GaAs FCM beamline Si reference XRF chamber A total of 8 rocks have been irradiated and by now 5 of them have been simulated. Basalt (Hawaii, Madagascar and Iceland) Anorthosite Ematite Gabbro Dolerite (Whin Sill, Java) Obsidian

Alfonso Mantero, INFN Genova Rocks Spectra Simulation Geant4 provides advanced instruments for the description of geometry and materials Thanks to a Geant4 simulation we can simulate any rock of known composition with a high degree of confidence

Alfonso Mantero, INFN Genova Rocks Spectra Simulation

Alfonso Mantero, INFN Genova Summary Geant4 provides precise models for detailed processes at the level of atomic substructure (shells) X-ray fluorescenceAuger electronPIXE X-ray fluorescence, Auger electron emission and PIXE are accurately simulated quantitative statistical analysis Rigorous test process and quantitative statistical analysis for software and physics validation have been performed A new generation of X-Ray detectors will be used shortly for planetary investigations, giving precise results library of rocks X-Ray spectra A library of rocks X-Ray spectra is needed for accurate physic reach and risk mitigation studies generatingany rock of known composition Geant4 is capable of generating X-Ray spectra for any rock of known composition and a library is under production.