Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.

Slides:



Advertisements
Similar presentations
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Advertisements

SSAG Data and Algorithm Subgroup, February 2004, Brussels Summary of data product and algorithm development at KNMI Ronald van der A, Juan Acarreta,
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
Page 1 Tropospheric NO 2 workshop, KNMI, De Bilt NL, Sept 2007M. Van Roozendael Tropospheric NO 2 from space: retrieval issues and perspectives for.
GOME-2 polarisation data and products L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI GSAG #42, EUMETSAT,
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Validation of Solar Backscatter Radiances Using Antarctic Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
15% 1. ABSTRACT We show results from joint TES-OMI retrievals for May, We combine TES and OMI data by linear updates from the spectral residuals.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
KNMI, The Netherlands * SCIAMACHY validation workshop, Bremen, 6 Dec ‘04 Large scale validation of SCIAMACHY nadir reflectance Gijs van.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
Gloudemans 1, J. de Laat 1,2, C. Dijkstra 1, H. Schrijver 1, I. Aben 1, G. vd Werf 3, M. Krol 1,4 Interannual variability of CO and its relation to long-range.
GOME-2 Polarisation Study — Final Presentation L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI EUMETSAT, Darmstadt,
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Monitoring Air Quality Changes Resulting from NO x Emission Regulations over the United States Using OMI and GOME-2 Data Kenneth Pickering, NASA-Goddard.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
1 Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Surface Reflectivity from OMI: Effects of Snow on OMI NO 2 Gray O’Byrne 1, Randall Martin 1,2, Aaron van Donkelaar 1, Joanna Joiner 3, Edward A. Celarier.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
SCIAMACHY long-term validation M. Weber, S. Mieruch, A. Rozanov, C. von Savigny, W. Chehade, R. Bauer, and H. Bovensmann Institut für Umweltphysik, Universität.
Aristeidis K. Georgoulias Konstantinos Kourtidis Konstantinos Konstantinidis AMFIC Web Data Base AMFIC Annual Meeting - Beijing October 2008 Democritus.
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]): Vincenzo Rizi Ecole Polytechnique (EPFL [13]): Bertrand Calpini Observatory of.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 Traffic Restrictions Associated with the Sino-African Summit: Reductions of NO x Detected from Space Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma.
Validation of the OMI Surface UV product OMI Science Team Meeting #11 De Bilt, June 20-23, 2006 Aapo Tanskanen.
Central EuropeUS East CoastJapan Global satellite observations of the column-averaged dry-air mixing ratio (mole fraction) of CO 2, denoted XCO 2, has.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
ESTIMATION OF SOLAR RADIATIVE IMPACT DUE TO BIOMASS BURNING OVER THE AFRICAN CONTINENT Y. Govaerts (1), G. Myhre (2), J. M. Haywood (3), T. K. Berntsen.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
Comparisons of LER/MLER Cloud Pressures with a Model of Mie Scattering Plane-Parallel Cloud Alexander Vasilkov 1, Joanna Joiner 2, Pawan K. Bhartia 2,
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
OMI Total Column Ozone compared with the Suomi NPP OMPS Mapper OMI Science Team Meeting, De Bilt, Netherlands 31 August – 2 September, 2015 Richard McPeters.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
Satellite validation using highschool student data KNMI-Globe Aerosol Project Ellen Brinksma, Folkert Boersma and Joris de Vroom.
OMI BSDF Validation Using Antarctic and Greenland Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA Outline.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
Fourth TEMPO Science Team Meeting
DOAS workshop 2015, Brussels, July 2015
Near UV aerosol products
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
GOME-2 hyper-spectral reflectance measurements: Inter-comparison with AVHRR and Seviri Rűdiger Lang, Rose Munro, Antoine Lacan, Christian Retscher, Gabriele.
Hyperspectral radiation: measurements and modelling
Diurnal Variation of Nitrogen Dioxide
Authors: B.Kerridge, R.Siddans, J.Reburn, B.Latter and V.Jay
Scientist, Gamer, Fighter
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAVALIG workshop, KNMI, De Bilt,

(2) Absorbing Aerosol Index: version 3.01 versus version 5.02W –Totally new algorithm setup –New look-up tables (pseudo spherical atmosphere + including polarisation) –Better surface height database –... Changes in L1–2 data processor:  version 5.02W is a huge improvement on version 3.01

SCIAVALIG workshop, KNMI, De Bilt, (3) Scientific product (SC-AAI) Official product (L2-AAI v5.02W) Scientific product SC-AAI versus L2-AAI v5.02W(2003) (grey = sun glint filtering)

SCIAVALIG workshop, KNMI, De Bilt, (4) Scatter plot: Scientific product SC-AAI versus L2-AAI v5.02W(2003) Good agreement (in the year 2003) –Calibration correction SC-AAI –Degradation correction SC-AAI –Ozone dependence taken into account in SC-AAI –L2-AAI: measurements “converted” to the (shorter) integration time of cluster 26 (O 2 –A band) Explanation for the differences:

SCIAVALIG workshop, KNMI, De Bilt, (5) Scientific product (SC-AAI) Official product (L2-AAI) Scientific product SC-AAI versus L2-AAI v5.02W(2011)  The official L2-AAI is suffering from a scan-angle dependence

SCIAVALIG workshop, KNMI, De Bilt, (6) Scatter plot: Scientific product SC-AAI versus L2-AAI v5.02W(2011) Official product suffers from a strong scan-angle dependence in 2011 colours: scan mirror positions

SCIAVALIG workshop, KNMI, De Bilt, (7) Influence of (scan-angle dependent) instrument degradation: Global mean reflectance Global mean residue (AAI) [no m-factors applied] [Tilstra et al., JGR 117, 2012]

SCIAVALIG workshop, KNMI, De Bilt, (8) M-factors applied in calculation of L2-AAI: Global mean residue (AAI) Current m-factor approach is scan-angle independent; the official L2-AAI product therefore shows a scan-angle dependence. Although v5.02W is a large improvement on the previous version, data after 2006 are not to be used without application of necessary corrections by the user.

SCIAVALIG workshop, KNMI, De Bilt, (9) Conclusion: –The official AAI product of level-2 version 5.02W is a large improvement w.r.t. the previous version –Instrument degradation has a large impact on the residue. The use of the official AAI product after 2006 is problematic. –This is, however, a level-1 issue.

SCIAVALIG workshop, KNMI, De Bilt, (10) Extra slides

SCIAVALIG workshop, KNMI, De Bilt, (11) (A is assumed to be wavelength independent: A 340 = A 380 ) A.Definition of the residue: where the surface albedo A for the simulations is such that: The AAI represents the scene colour in the UV Introduction: Absorbing Aerosol Index (AAI) B.Definition of the AAI: AAI = residue > 0(and the AAI is not defined where residue < 0) The AAI can be retrieved over land and sea surfaces, even in the presence of clouds. no clouds, no aerosols: r = 0 clouds, scattering aerosols: r < 0 absorbing aerosols: r > 0

SCIAVALIG workshop, KNMI, De Bilt, (12) Example of global aerosol distribution recorded by SCIAMACHY: The “Global Dust Belt”: Desert Dust Aerosols (DDA) (dust storms, all year) AAI from other UV satellite instruments: TOMS, GOME-1, OMI, GOME-2. Combined with SCIAMACHY there are more than three decades (1978–2012) of AAI data available for studies of trends in desert dust and biomass burning aerosol. Biomass Burning Aerosols (BBA) (dry season, anthropogenic)

SCIAVALIG workshop, KNMI, De Bilt, (13) The “Global Dust Belt”

SCIAVALIG workshop, KNMI, De Bilt, (14) Wavelength pair (nm) Equator crossing time Pixel size (km) Days needed for global coverage Platform / Operation period GOME–1 340 / : 30 LT 320 × 40 3ERS-2 (1995 – 2003*) SCIAMACHY 340 / : 00 LT 60 × 30 6Envisat (2002 – 2012) GOME–2 340 / : 30 LT 80 × MetOp-A (2006 – present) OMI 354 / : 30 LT 13 × 24 1Aura (2004 – present) AAI products from GOME-1, SCIAMACHY, GOME-2, and OMI: * GOME-1: loss of global coverage on 22 June 2003 ; instrument retired on 4 July 2011