Foreground subtraction or foreground avoidance? Adrian Liu, UC Berkeley.

Slides:



Advertisements
Similar presentations
The estimation of the SZ effects with unbiased multifilters Diego Herranz, J.L. Sanz, R.B. Barreiro & M. López-Caniego Instituto de Física de Cantabria.
Advertisements

Weak Lensing Tomography Sarah Bridle University College London.
Important slides (Cosmological group at KASI)
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
EOR Detection Strategies Somnath Bharadwaj IIT Kharagpur.
FastICA as a LOFAR-EoR Foreground Cleaning Technique Filipe Abdalla and Emma Woodfield University College London with Saleem Zaroubi, Vibor Jelic, Panos.
Systematic effects in cosmic microwave background polarization and power spectrum estimation SKA 2010 Postgraduate Bursary Conference, Stellenbosch Institute.
Subtleties in Foreground Subtraction Adrian Liu, MIT mK 1 K 100 mK.
Wed. 17th Sept Hamburg LOFAR Workshop.  Extract a cosmological signal from a datacube, the three axes of which are x and y positions, and frequency.
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
Distinguishing Primordial B Modes from Lensing Section 5: F. Finelli, A. Lewis, M. Bucher, A. Balbi, V. Aquaviva, J. Diego, F. Stivoli Abstract:” If the.
Cosmological Information Ue-Li Pen Tingting Lu Olivier Dore.
Epoch of Reionization Tomography with the CSO Wide-field C+ spectral mapping and correlation with HI Matt Bradford CSO NSF visit: October 12, 2011 CSO.
Spectral analysis Kenneth D. Harris 18/2/15. Continuous processes A continuous process defines a probability distribution over the space of possible signals.
The Cosmic Microwave Background. Maxima DASI WMAP.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Challenge: Low frequency foreground – hot, confused sky HI 21cm signal ~ 10 mK Foreground: T ~ 100  z)^-2.6 K Highly ‘confused’: 1 source/deg^2.
Introduction to Power Spectrum Estimation Lloyd Knox (UC Davis) CCAPP, 23 June 2010.
Matched Filter Search for Ionized Bubbles in 21-cm Maps Kanan K. Datta Dept. of Astronomy Stockholm University Oskar Klein Centre.
Kalman filter and SLAM problem
The Statistical Properties of Large Scale Structure Alexander Szalay Department of Physics and Astronomy The Johns Hopkins University.
Title Here Probing the Epoch of Reionization with the Tomographic Ionized-carbon Mapping Experiment (TIME) Jamie Bock Caltech / JPL CCAT Workshop, Boulder.
Impact of intrinsic alignments on cosmic shear Shearing by elliptical galaxy halos –SB + Filipe Abdalla astro-ph/ Intrinsic alignments and photozs.
Raman Research Institute, Bangalore, India Ravi Subrahmanyan (RRI, Bangalore) Ron Ekers & Aaron Chippendale (CAS) A Raghunathan & Nipanjana Patra (RRI,
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Making the most of the ISW effect Robert Crittenden Work with S. Boughn, T. Giannantonio, L. Pogosian, N. Turok, R. Nichol, P.S. Corasaniti, C. Stephan-Otto.
Sanjay K. Pandey L.B.S.P.G.College, Gonda (India). Statistical Analysis of Redshifted Neutral Hydrogen.
Speckle Correlation Analysis1 Adaptive Imaging Preliminary: Speckle Correlation Analysis.
Le Fond Gravitationnel Stochastique Tania Regimbau ARTEMIS - OCA.
Judd D. Bowman Arizona State University Alan Rogers MIT/Haystack Observatory May 26, 2011 Experiment to Detect the Global EoR Signature (EDGES)
21 cm Reionization Forecast and Search at GMRT
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Exotic Physics in the Dark Ages Katie Mack Institute of Astronomy / Kavli Institute for Cosmology, University of Cambridge.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Fundamental limits of radio interferometers: Source parameter estimation Cathryn Trott Randall Wayth Steven Tingay Curtin University International Centre.
Lecture Topic 5 Pre-processing AFFY data. Probe Level Analysis The Purpose –Calculate an expression value for each probe set (gene) from the PM.
MARK CORRELATIONS AND OPTIMAL WEIGHTS ( Cai, Bernstein & Sheth 2010 )
The Dawn of 21 cm Cosmology with EDGES Judd D. Bowman Caltech Alan E. E. Rogers Haystack Observatory.
Collaborators within DK-Planck community Lung-Yih Chiang (NBI) Andrei Doroshkevich (TAC,ASC FIRAN) Per Rex Christensen (NBI) Igor D. Novikov ( NBI) Pavel.
EBEx foregrounds and band optimization Carlo Baccigalupi, Radek Stompor.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
Bwdem – 06/04/2005doing cosmology with galaxy clusters Cosmology with galaxy clusters: testing the evolution of dark energy Raul Abramo – Instituto de.
J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale Structure inference.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Locally Optimized Precipitation Detection over Land Grant Petty Atmospheric and Oceanic Sciences University of Wisconsin - Madison.
Foreground Contamination and the EoR Window Nithyanandan Thyagarajan N. Udaya Shankar Ravi Subrahmanyan (Raman Research Institute, Bangalore)
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
Observed and Simulated Foregrounds for Reionization Studies with the Murchison Widefield Array Nithyanandan Thyagarajan, Daniel Jacobs, Judd Bowman + MWA.
On the detection of the tensor-to-scalar ratio r using the CMB B-modes
1 Estimating Structured Vector Autoregressive Models Igor Melnyk and Arindam Banerjee.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Gravitational Lensing
Observations of Near Infrared Extragalactic Background (NIREBL) ISAS/JAXAT. Matsumoto Dec.2-5, 2003 Japan/Italy seminar at Niigata Univ.
Remote Quadrupole Measurements from Reionization Gil Holder Collaborators: Jon Dudley; Alex van Engelen (McGill) Ilian Iliev (CITA/Zurich); Olivier Dore.
Power Spectrum Estimation in Theory and in Practice Adrian Liu, MIT.
WMAP The Wilkinson Microwave Anisotropy Probe Universe.
Cheng Zhao Supervisor: Charling Tao
On the Doorstep of Reionization Judd D. Bowman (Caltech) March 11, 2009 DIY 21 cm cosmology.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) NNIW Dec.
Some bonus cosmological applications of BigBOSS ZHANG, Pengjie Shanghai Astronomical Observatory BigBOSS collaboration meeting, Paris, 2012 Refer to related.
EoR power spectrum systematics
Nicolas Fagnoni – Cosmology on Safari – 14th February 2017
Nithyanandan Thyagarajan1, Aaron R. Parsons2,
Linear Filters and Edges Chapters 7 and 8
Towards the first detection using SPT polarisation
EDGES: The ‘Global’ Perspective
Constraining the redshift of reionization using a “modest” array
Nithyanandan Thyagarajan (or just “Nithya”) Arizona State University
Nithyanandan Thyagarajan (Arizona State University) HERA+, MWA+
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
Presentation transcript:

Foreground subtraction or foreground avoidance? Adrian Liu, UC Berkeley

Vision

The redshifted 21cm line is possibly our only direct probe of reionization and the dark ages 21cmFAST, Mesinger et al.

Current power spectrum limits from experiments like PAPER… Parsons, AL et al. 2013,

…are sensitivity/integra tion time limited at high k… Parsons, AL et al. 2013,

…are likely limited by foreground contamination at low k. Parsons, AL et al. 2013,

Foreground contamination is serious Foregrounds ~ O(100 K); Signal ~ O(1-10 mK)

Cosmic Microwave Background 21cm Tomography (See AL, Pritchard, Tegmark, Loeb 2013 PRD 87, for more details)

Parsons, AL et al. 2013, Foreground subtraction Work at low k. Instrumental noise low. Foreground modeling requirements extreme.

Parsons, AL et al. 2013, Foreground avoidance Work at high k. Instrumental noise high. Foreground modeling requirements easier.

Foreground subtraction or foreground avoidance?

Take-home messages A robust framework for the quantification of errors is essential for a detection of the power spectrum. “Optimal” methods may be overly aggressive and susceptible to mis-modeling of foregrounds. Assuming that foregrounds are Gaussian-distributed may lead to an underestimation of errors. Foreground avoidance may be a more robust way forward.

Necessary ingredients for successful foreground mitigation

Ingredients for foreground mitigation 1.A power spectrum estimation framework that fully propagates error covariances. Data Foreground model Model uncertainty Fourier, binning Bias removal

AL 2013, in prep.

AL 2013, in prep.

AL 2013, in prep.

Ingredients for foreground mitigation 1.A power spectrum estimation framework that fully propagates error covariances. Window functions. Covariant errors.

Along constant k-tracks, error properties differ k~0.1 hMpc -1 k~0.4 hMpc -1 k~3 hMpc -1

Ignoring error correlations can yield larger error bars or mistaken detections Relative error bar increase k [ Mpc -1 ] % 0% 20% 40% 60% 80% Dillon, AL, Williams et al. 2013,

Ingredients for foreground mitigation 1.A power spectrum estimation framework that fully propagates error covariances. Window functions. Covariant errors.

1.A power spectrum estimation framework that fully propagates error covariances. Window functions. Covariant errors. 2.A good foreground model including error covariances (see, e.g., Trott et al. 2012, ApJ 757, 101). Ingredients for foreground mitigation Foreground model Model uncertainty

1.A power spectrum estimation framework that fully propagates error covariances. Window functions. Covariant errors. 2.A good foreground model including error covariances (see, e.g., Trott et al. 2012, ApJ 757, 101). 3.A method for propagating foreground properties through instrumental effects (e.g. chromatic beams). Ingredients for foreground mitigation

AL 2013, in prep.

Ingredients for foreground mitigation 1.A power spectrum estimation framework that fully propagates error covariances. Window functions. Covariant errors. 2.A good foreground model including error covariances (see, e.g., Trott et al. 2012, ApJ 757, 101). 3.A method for propagating foreground properties through instrumental effects (e.g. chromatic beams).

Foreground subtraction or foreground avoidance?

Subtraction Avoidance Projection matrix, e.g. delay transform

AL 2013, in prep Error(avoid) Error(sub) 10 0

AL 2013, in prep Error(avoid) Error(sub)

AL 2013, in prep. SubtractionAvoidance

Leakage from mismodeled foregrounds more extended for subtraction than for avoidance AL 2013, in prep Avoidance 10 -2

Leakage from mismodeled foregrounds more extended for subtraction than for avoidance AL 2013, in prep. Subtraction

Non-Gaussianity?

Foregrounds are highly non-Gaussian de Oliveira-Costa 2008, MNRAS 388, 247 T Log[p(T)] Histogram

AL 2013, in prep T [K] p(T) Gaussian Log-norm

Assuming Gaussianity doesn’t bias the estimator Pick b to ensure cancellation

Assuming Gaussianity causes the error to be underestimated

Take-home messages A robust framework for the quantification of errors is essential for a detection of the power spectrum. “Optimal” methods may be overly aggressive and susceptible to mis-modeling of foregrounds. Assuming that foregrounds are Gaussian-distributed may lead to an underestimation of errors. Foreground avoidance may be a more robust way forward.