Today’s summary Polarization Energy / Poynting’s vector

Slides:



Advertisements
Similar presentations
Wave Incidence at Oblique angles
Advertisements

Lecture 8: Reflection and Transmission of Waves
Electromagnetic (E-M) theory of waves at a dielectric interface
So far Geometrical Optics – Reflection and refraction from planar and spherical interfaces –Imaging condition in the paraxial approximation –Apertures.
Now that we have determined the solutions to the differential equation describing the oscillations of the electric and magnetic fields with respect to.
8. Wave Reflection & Transmission
Reflection and refraction
Chapter 23: Fresnel equations Chapter 23: Fresnel equations
Propagation of surface plasmons through planar interface Tomáš Váry Peter Markoš Dept. Phys. FEI STU, Bratislava.
Electro- magnetic waves in matter. Linear media: velocity: most materials:
Chapter 33 Electromagnetic Waves
Electromagnetic Waves Electromagnetic waves are identical to mechanical waves with the exception that they do not require a medium for transmission.
Wavepackets Outline - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - Δk – Δx Relations.
Reflection and Refraction. Plane wave A plane wave can be written as follows: Here A represent the E or B fields, q=i,r,t and j=x,y,z So this is a representation.
Lecture 7 TE and TM Reflections Brewster Angle
Reflection and Refraction of Plane Waves
Reflection and Transmission of Plane Waves
1 Optical Properties of Materials … reflection … refraction (Snell’s law) … index of refraction Index of refraction Absorption.
EE3321 ELECTROMAGNETIC FIELD THEORY
The speed of light is a constant because the electric and magnetic fields support each other. If the speed of light was not constant energy would not be.
Chapter 33. Electromagnetic Waves What is Physics? Maxwell's Rainbow The Traveling Electromagnetic Wave, Qualitatively The Traveling.
The Electromagnetic Field. Maxwell Equations Constitutive Equations.
2 nd & 3 th N.U.T.S. Workshops Gulu University Naples FEDERICO II University 7 – Polarization.
Electromagnetic waves Physics 2102 Gabriela González.
Jaypee Institute of Information Technology University, Jaypee Institute of Information Technology University,Noida Department of Physics and materials.
Pat Arnott, ATMS 749 Atmospheric Radiation Transfer CH4: Reflection and Refraction in a Homogenous Medium.
1 ECE 480 Wireless Systems Lecture 3 Propagation and Modulation of RF Waves.
1 EEE 498/598 Overview of Electrical Engineering Lecture 11: Electromagnetic Power Flow; Reflection And Transmission Of Normally and Obliquely Incident.
Wave Incidence at Oblique angles Sandra Cruz-Pol ECE Dept. UPRM.
RS ENE 428 Microwave Engineering Lecture 3 Polarization, Reflection and Transmission at normal incidence 1.
Fundamental of Optical Engineering Lecture 7.  Boundary conditions:E and T must be continuous.  Region 1:
Chapter 44 Polarization. Content of this Chapter About polarization Polarizing sheets Polarization by reflection Double refraction Circular polarization.
Prof. D. R. Wilton Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 [Chapter 4]
RS ENE 428 Microwave Engineering Lecture 3 Polarization, Reflection and Transmission at normal incidence 1.
From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) These PowerPoint color diagrams can only be used by.
Chapter 23: Fresnel equations. Recall basic laws of optics Law of reflection: ii normal n1n1 n2n2 rr tt Law of refraction “Snell’s Law”: Easy to.
Chapter 33 Electromagnetic Waves. 33.2: Maxwell’s Rainbow: As the figure shows, we now know a wide spectrum (or range) of electromagnetic waves: Maxwell’s.
In the absence of sources, the Maxwell equations in an infinite medium are.
Polarization. When a plane EM wave incident at an oblique angle on a dielectric interface, there are two cases to be considered: incident electric field.
1 RS ENE 428 Microwave Engineering Lecture 4 Reflection and Transmission at Oblique Incidence, Transmission Lines.
So far, we have considered plane waves in an infinite homogeneous medium. A natural question would arise: what happens if a plane wave hits some object?
Electromagnetic Waves
1 EE 543 Theory and Principles of Remote Sensing Reflection and Refraction from a Planar Interface.
ENE 428 Microwave Engineering
Reflection and Refraction A short overview. Plane wave A plane wave can be written as follows: Here A represent the E or B fields, q=i,r,t and j=x,y,z.
Lecture 2. Review lecture 1 Wavelength: Phase velocity: Characteristic impedance: Kerchhoff’s law Wave equations or Telegraphic equations L, R, C, G ?
Sources (EM waves) 1.
Superposition of Waves
Final Exam Lectures EM Waves and Optics. Electromagnetic Spectrum.
EEE 431 Computational Methods in Electrodynamics Lecture 2 By Rasime Uyguroglu.
5. Electromagnetic Optics. 5.1 ELECTROMAGNETIC THEORY OF LIGHT for the 6 components Maxwell Eq. onde Maxwell.
7. Electromagnetic Waves 7A. Plane Waves Consider Maxwell’s Equations with no sources We are going to search for waves of the form To make things as general.
EE231 Introduction to Optics: Basic EM Andrea Fratalocchi ( slide 1 EE 231 Introduction to Optics Review of basic EM concepts Andrea.
UPB / ETTI O.DROSU Electrical Engineering 2
Polarization of Electromagnetic Waves
Chapter 1 What is the significance of the Biot-Savart law?
Review of basic EM concepts
Sources (EM waves) 1.
Reflection and Refraction of Electromagnetic Waves
Reading Quiz When a light ray hits a surface, the plane which contains the incoming, reflected, and transmitted beams, is called the “plane of _________”:
Announcements Have huygen’s wavelets set up on remote desktop
nature. com/articles/nature WT
Chapter 33. Electromagnetic Waves
ENE 325 Electromagnetic Fields and Waves
Wireless Communications Chapter 4
Review of basic EM concepts
ENE 428 Microwave Engineering
Notes 18 ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson
ENE 428 Microwave Engineering
ENE 428 Microwave Engineering
Presentation transcript:

Today’s summary Polarization Energy / Poynting’s vector Reflection and refraction at a dielectric interface: wave approach to derive Snell’s law reflection and transmission coefficients total internal reflection (TIR) revisited

Polarization

Propagation and polarization In isotropic media (e.g. free space, amorphous glass, etc.) planar wavefront electric field vector E More generally, (reminder :Anisotropic in media, e.g. crystals, one could E not have parallel to D) wave-vector k

Linear polarization (frozen time)

Linear polarization (fixed space)

Circular polarization (frozen time)

Circular polarization: linear components

Circular polarization (fixed space)

/4 plate Circular polarization Linear polarization birefringent l/4 plate

λ/2 plate Linear (90o-rotated) polarization Linear polarization birefringent λ/2 plate

Think about that Linear polarization birefringent λ/4 plate mirror

Relationship between E and B Vectors k, E, B form a right-handed triad. Note: free space or isotropic media only

Energy

energy flux (energy per unit time & unit area) The Poynting vector S has units of W/m2 so it represents energy flux (energy per unit time & unit area)

Poynting vector and phasors (I) For example, sinusoidal field propagating along z Recall: for visible light, ω~1014-1015Hz

Poynting vector and phasors (II) Recall: for visible light, ω~1014-1015Hz So any instrument will record the average incident energy flux where T is the period (T=λ/c) is called the irradiance, aka intensity of the optical field (units: W/m2)

Poynting vector and phasors (III) 2 For example: sinusoidal electric field, Then, at constant z:

Poynting vector and phasors (IV) Recall phasor representation: complex amplitude or " phasor": Can we use phasors to compute intensity?

Poynting vector and phasors (V) Consider the superposition of two fields of the same frequency: Now consider the two corresponding phasors:

Poynting vector and phasors (V) Consider the superposition of two fields of the same frequency: Now consider the two corresponding phasors: and the quantity

Poynting vector and irradiance

Reflection / Refraction Fresnel coefficients

Reflection & transmission @ dielectric interface

Reflection & transmission @ dielectric interface

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence Continuity of tangential electric field at the interface: Since the exponents must be equal for all x, we obtain

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence Continuity of tangential electric field at the interface: law of reflection Snell’s law of refraction so wave description is equivalent to Fermat’s principle!! ☺

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence Incident electric field: Reflected electric field: Transmitted electric field: Need to calculate the reflected and transmitted amplitudes E0r, E0t i.e. need two equations

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence Continuity of tangential electric field at the interface gives us one equation: which after satisfying Snell’s law becomes

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence The second equation comes from continuity of tangential magnetic field at the interface:

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence So continuity of tangential magnetic field Bx at the interface y=0 becomes:

Reflection & transmission @ dielectric interface I. Polarization normal to plane of incidence

Reflection & transmission @ dielectric interface II. Polarization parallel to plane of incidence Following a similar procedure ...

Reflection & transmission @ dielectric interface

Reflection & transmission of energy @ dielectric interface Recall Poynting vector definition: different on the two sides of the interface

Energy conservation

Reflection & transmission of energy @ dielectric interface

Normal incidence Note: independent of polarization

This angle is known as Brewster’s angle. Under such Brewster angle Recall Snell’s Law This angle is known as Brewster’s angle. Under such circumstances, for an incoming unpolarized wave, only the component polarized normal to the incident plane will be reflected.

Why does Brewster happen? elemental Why does Brewster happen? dipole radiator excited by the incident field

Why does Brewster happen?

Why does Brewster happen?

Why does Brewster happen?

Turning the tables Is there a relationship between r, t and r’, t’ ?

Relation between r, r’ and t, t’ Proof: algebraic from the Fresnel coefficients or using the property of preservation of the preservation of the field properties upon time reversal

Proof using time reversal

Total Internal Reflection Happens when Substitute into Snell’s law no energy transmitted

Total Internal Reflection Propagating component no energy transmitted

Total Internal Reflection Pure exponential decay º evanescent wave It can be shown that: no energy transmitted

Phase delay upon reflection

Phase delay upon TIR

Phase delay upon TIR