Handout #6, 5.12 Spring 2003, 2/28/03 Stereochemistry stereochemistry: study of the spatial characteristics of a molecule stereocenter: atom bonded to.

Slides:



Advertisements
Similar presentations
3-dimensional Aspects of Tetrahedral Atoms
Advertisements

Unit 3 Stereochemistry.  Chirality and Stereoisomers  Configuration vs. Conformation  (R) and (S) Configurations  Optical Activity  Fischer Projections.
153 Symmetry Monarch butterfly: bilateral symmetry= mirror symmetry Whenever winds blow butterflies find a new place on the willow tree -Basho (~1644 -
STEREOCHEMISTRY Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , 7.5.
Chapter 51 Stereochemistry: Chapter 5 The Arrangement of Atoms in Space; The Stereochemistry of Addition Reactions.
STEREOCHEMISTRY By Puan Azduwin Khasri 8 th November 2012 By Puan Azduwin Khasri 8 th November 2012.
Chapter 5 STEREOCHEMISTRY Stereochemistry. CHIRALITY AND ENATIOMERS 1.Chiral Object – an object that IS NOT superimposable with its mirror image. 2.Achiral.
Chapter 5: Stereoisomers
Unit 3 – Stereochemistry
Organic Chemistry 4 th Edition Paula Yurkanis Bruice Irene Lee Case Western Reserve University Cleveland, OH ©2004, Prentice Hall Chapter 5 Stereochemistry.
Organic Chemistry Stereochemistry. Isomers compounds with the same molecular formula but not identical structures.
The study of the three dimensional structure of molecules.
1 Stereochemistry Prof. Dr. Harno Dwi Pranowo Austrian-Indonesian Center for Computational Chemistry Chemistry Department, FMIPA UGM.
Chapter 5 Stereochemistry
Chapter 6 Stereochemistry.
© 2013 Pearson Education, Inc. Stereochemistry Stereochemistry refers to the 3-dimensional properties and reactions of molecules. It has its own language.
CHE 240 Unit IV Stereochemistry, Substitution and Elimination Reactions CHAPTER FIVE Terrence P. Sherlock Burlington County College 2004.
© Prentice Hall 2001Chapter 41 Naming Enantiomers: The R,S System of Nomenclature 1.Rank groups by atomic number of the atom bonded to the chirality center.
Pharmaceutical Organic Chemistry Lec 3. Stereochemistry Optical isomerism Absolute Configuration ( AC ) Is the actual spatial arrangement of atoms or.
Stereoisomerism Nanoplasmonic Research Group Organic Chemistry Chapter 5.
Chapter 5 Stereochemistry
Stereochemistry.
Chapter 4: Stereochemistry. Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C 7 H 16 : 2-methylhexame.
Stereochemistry The arrangement of atoms in space By: Dr. Manal F. Abou Taleb Organic Chemistry, 5 th Edition L. G. Wade, Jr. chapter 5.
Stereochemistry & Chiral Molecules. Isomerism Isomers are different compounds with the same molecular formula 1) Constitutional isomers: their atoms are.
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
Chirality Chirality - the Handedness of Molecules.
CHEMISTRY 2500 Topic #3: Stereochemistry Spring 2011 Dr. Susan Lait.
Fischer Projections Fischer projection: a two- dimensional representation showing the configuration of a stereocenter –horizontal lines represent bonds.
Chapter 5 Stereochemistry Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2003,  Prentice Hall Organic Chemistry,
Isomers Isomers: different compounds with the same molecular formula Constitutional isomers: isomers with a different connectivity Stereoisomers: isomers.
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
Stereochemistry. 2 Chirality Handedness“ Handedness ”: Right glove doesn’t fit the left hand. Mirror-imageMirror-image object is different from the original.
Stereochemistry Chiral Molecules
Chapter 5 Stereochemistry
Configurational Isomers
Chapter 5 Stereochemistry: Chiral Molecules 1.
Stereochemistry Constitutional Isomers: same molecular formula, different connectivity. Stereoisomers: same molecular formula, same connectivity, different.
Chemistry 2100 Chapter 15. Enantiomers Enantiomers: Enantiomers: Nonsuperposable mirror images. –As an example of a molecule that exists as a pair of.
Chapter 5 Stereochemistry: Chiral Molecules
Chapter 5 Stereochemistry Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry,
Chiral Molecules Chapter 5.
Stereochemistry 240 Chem Chapter 5 1. Isomerism Isomers are different compounds that have the same molecular formula.
Stereochemistry.
Chapter 15 Principles of Stereochemistry
Stereochemistry.
Diastereomers Stereoisomers:
Stereochemistry Stereochemistry refers to the
Isomers: The Arrangement of Atoms in Space University of California,
University of California,
قسم الصناعات الكيميائيه
By: Mdm Rohazita Bahari ERT 102 Organic Chemistry
Chapter 5 Stereochemistry: Chiral Molecules
Figure Number: 05-00CO Title: Pair of Enantiomers
Chapter 6 Principles of Stereochemistry ***Bring Your Model Kits to Class!***
Chapter 7 STEREOCHEMISTRY
Chapter 5 Stereochemistry: Chiral Molecules
240 Chem Stereochemistry Chapter 5.
Stereochemistry & stereoisomers
Unit 3 – Stereochemistry
Isomers: The Arrangement of Atoms in Space University of California,
Chapter 4: Stereochemistry
240 Chem Stereochemistry Chapter 5.
Stereochemistry Stereochemistry refers to the
Symmetry Monarch butterfly: bilateral symmetry= mirror symmetry 153.
Stereochemistry.
L35 REVIEW.
Isomers: The Arrangement of Atoms in Space University of California,
240 Chem Stereochemistry Chapter 5.
Presentation transcript:

Handout #6, 5.12 Spring 2003, 2/28/03 Stereochemistry stereochemistry: study of the spatial characteristics of a molecule stereocenter: atom bonded to four different groups (has R or S configuration) internal mirror plane: plane that divides molecule in such a way that two halves are identical chiral (optically active): possessing a non-identical mirror image (an enantiomer) achiral: superimposable on its mirror image enantiomers: non-identical mirror images (same physical properties) diastereomers: stereoisomers that are not enantiomers (different physical properties) meso compound: achiral molecule that has stereocenters * If you can't find a mirror plane, it doesn't mean that there isn't one. Compare mirror images!

Assigning R/S Stereochemistry (Cahn–Ingold–Prelog) Every stereocenter can be assigned as R or S. A stereocenter is an atom attached to four different groups. 1. Assign each group a priority (1 = highest). a) Highest atomic number has priority. b) Heavier isotopes have priority (D > H). c) In a tie, move along the chain to the first point of difference. d) With multiple bonds, break each pi-bond and duplicate the atoms at each end. 2. Put the lowest priority group (4) in back and view along the bond from carbon to group Draw an arrow from 1 to 2 to 3. a) Clockwise = R (Your car turns right!) b) Counterclockwise = S (sinister means left in Latin) Tricks: 1. Taking the mirror image of a stereocenter switches R and S. This means that, if a molecule is chiral, switching the R/S configuration of every stereocenter will give you the enantiomer. 2. Exchanging any two groups on a stereocenter switches R and S.

Fischer Projections Useful for comparing stereoisomers with more than one stereocenter. The Rules: 1.At every intersection, the vertical lines are pointed back (away from you) and the horizontal lines are pointed up (toward you). 2. Draw the carbon backbone of a molecule as the vertical line with the most highly oxidized carbon on top. a) You can think of oxidation as how many bonds carbon has to oxygen. So the ranking goes as follows: CO2H > (CHO or CRO) > CH2OH > CH3 3. It is legal to rotate Fischer projections by 180° in the plane of the paper. 4. It is not legal to rotate Fischer projections by 90° or out of the plane of the paper. Tricks: 1. Exchanging the horizontal substituents on a stereocenter switches R and S. 2. To take the mirror image, just exchange the horizontal substituents at each intersection. If the molecule is chiral, this will give you the enantiomer. 3. If you can draw a mirror plane through the Fischer projection, then the molecule is achiral.

Using the Lingo It is important that you use stereochemical terminology correctly. Here are the proper terms for describing each of the following: an atom: an atom with four different groups attached is a stereocenter stereocenters are also called chirality centers, asymmetric centers, and stereogenic centers absolute configuration of a stereocenter is assigned using R/S nomenclature a molecule: achiral or chiral (optically active) achiral molecules that contain stereocenters are called meso compounds optically active molecules can be labelled (+/–) or (d/l) related molecules: enantiomers (non-identical mirror images) diastereomers (any stereoisomers that are not enantiomers) geometric isomers (a specific type of diastereomer) samples of molecules: optically pure (only one enantiomer present in sample) racemate or racemic mixture (mixture containing equal amounts of each enantiomer) racemic mixtures are not optically active mixtures in between optically pure and racemic are described by their optical purity or enantiomeric excess (see section 5-7 in Wade) Note: It is important not to confuse experimentally derived labels (+/– or d/l) with structurally derived labels (R/S). They are not related!