February 14, 2002 Putting Linear Programs into standard form

Slides:



Advertisements
Similar presentations
February 21, 2002 Simplex Method Continued
Advertisements

Thursday, March 7 Duality 2 – The dual problem, in general – illustrating duality with 2-person 0-sum game theory Handouts: Lecture Notes.
Artificial Variables, 2-Phase and Big M Methods
The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case.
EMIS 8374 LP Review: The Ratio Test. 1 Main Steps of the Simplex Method 1.Put the problem in row-0 form. 2.Construct the simplex tableau. 3.Obtain an.
Hillier and Lieberman Chapter 4.
Simplex (quick recap). Replace all the inequality constraints by equalities, using slack variables.
Chapter 5: Linear Programming: The Simplex Method
L17 LP part3 Homework Review Multiple Solutions Degeneracy Unbounded problems Summary 1.
Linear Programming – Simplex Method
SIMPLEX METHOD FOR LP LP Model.
LECTURE 14 Minimization Two Phase method by Dr. Arshad zaheer
Dr. Sana’a Wafa Al-Sayegh
Computational Methods for Management and Economics Carla Gomes Module 6a Introduction to Simplex (Textbook – Hillier and Lieberman)
Degeneracy and the Convergence of the Simplex Algorithm LI Xiao-lei.
L16 LP part2 Homework Review N design variables, m equations Summary 1.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Computational Methods for Management and Economics Carla Gomes Module 6b Simplex Pitfalls (Textbook – Hillier and Lieberman)
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
Design and Analysis of Algorithms
Linear Programming (LP)
5.6 Maximization and Minimization with Mixed Problem Constraints
D Nagesh Kumar, IIScOptimization Methods: M3L1 1 Linear Programming Preliminaries.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
LINEAR PROGRAMMING SIMPLEX METHOD.
1. The Simplex Method.
Chapter 6 Linear Programming: The Simplex Method
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
Simplex method (algebraic interpretation)
Chapter 3. Pitfalls Initialization Ambiguity in an iteration
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
The Simplex Method Updated 15 February Main Steps of the Simplex Method 1.Put the problem in Row-Zero Form. 2.Construct the Simplex tableau. 3.Obtain.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
The big M method LI Xiao-lei.
Duality Theory  Every LP problem (called the ‘Primal’) has associated with another problem called the ‘Dual’.  The ‘Dual’ problem is an LP defined directly.
Business Mathematics MTH-367 Lecture 15. Chapter 11 The Simplex and Computer Solutions Methods continued.
Mechanical Engineering Department 1 سورة النحل (78)
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
1 Chapter 4 The Simplex Algorithm PART 2 Prof. Dr. M. Arslan ÖRNEK.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm file Simplex2_AMII_05a_gr.
OR Chapter 7. The Revised Simplex Method  Recall Theorem 3.1, same basis  same dictionary Entire dictionary can be constructed as long as we.
An-Najah N. University Faculty of Engineering and Information Technology Department of Management Information systems Operations Research and Applications.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
(i) Preliminaries D Nagesh Kumar, IISc Water Resources Planning and Management: M3L1 Linear Programming and Applications.
 LP graphical solution is always associated with a corner point of the solution space.  The transition from the geometric corner point solution to the.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
1 Simplex algorithm. 2 The Aim of Linear Programming A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
GOOD MORNING CLASS! In Operation Research Class, WE MEET AGAIN WITH A TOPIC OF :
Tuesday, March 19 The Network Simplex Method for Solving the Minimum Cost Flow Problem Handouts: Lecture Notes Warning: there is a lot to the network.
Chapter 4 The Simplex Algorithm and Goal Programming
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
1 Two-Phase Simplex Method file Simplex3_AMII_05b_gr Rev. 1.4 by M. Miccio on December 17, 2014 from a presentation at the Fuqua School of Business MIT.
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Solving Linear Program by Simplex Method The Concept
Chap 10. Sensitivity Analysis
Perturbation method, lexicographic method
Chapter 4 Linear Programming: The Simplex Method
Chapter 3 The Simplex Method and Sensitivity Analysis
Well, just how many basic
Chapter 4 The Simplex Algorithm
Presentation transcript:

15.053 February 14, 2002 Putting Linear Programs into standard form Introduction to Simplex Algorithm Note: this presentation is designed with animation to be viewed as a slide show.

Linear Programs in Standard Form Non-negativity constraints for all variables. All remaining constraints are expressed as equality constraints. The right hand side vector, b, is non-negative. An LP not in Standard Form maximize 3x1 + 2x2 - x3 + x4 x1 + 2x2 + x3 - x4 ≤ 5; -2x1 - 4x2 + x3 + x4 ≤ -1; x1 ≥ 0, x2 ≥ 0 not equality not equality x3 may be negative

Converting Inequalities into Equalities Plus Non-negatives After x1 + 2x2 + x3 - x4 +s = 5 s ≥ 0 Before x1 + 2x2 + x3 - x4 ≤ 5 s is called a slack variable, which measures the amount of “unused resource.” Note that s = 5 - x1 - 2x2 - x3 + x4. To covert a “≤” constraint to an equality, add a slack variable.

Converting “≥” constraints Consider the inequality -2x1 - 4x2 + x3 + x4 ≤ -1; Step 1. Eliminate the negative RHS 2x1 + 4x2 - x3 - x4 ≥ 1 Step 2. Convert to an equality 2x1 + 4x2 - x3 - x4 - s = 1 s ≥ 0 The variable added will be called a “surplus variable.” To covert a “≥” constraint to an equality, subtract a surplus variable.

More Transformations How can one convert a maximization problem to a minimization problem? Example: Maximize 3W + 2P Subject to “constraints” Has the same optimum solution(s) as Minimize -3W -2P

The Last Transformations (for now) Transforming variables that may take on negative values. maximize 3x1 + 4x2 + 5 x3 subject to 2x1 - 5x2 + 2x3 = 17 other constraints x1 ≤ 0, x2 is unconstrained in sign, x3 ≥ 0 Transforming x1: replace x1 by y1 = -x1; y1 ≥ 0. max -3 y1 + 4x2 +5 x3 -2 y1 -5 x2 +2 x3 =17 y1 ≥ 0, x2 is unconstrained in sign, x3 ≥ 0 One can recover x1 from y1.

Transforming variables that may take on negative values. max -3 y1 + 4x2 +5 x3 -2 y1 -5 x2 +2 x3 =17 y1 ≥ 0, x2 is unconstrained in sign, x3 ≥ 0 Transforming x2: replace x2 by x2 = y3 - y2; y2 ≥ 0, y3 ≥ 0. max -3 y1 + 4(y3 - y2) +5 x3 -2 y1 -5 y3 +5 y2 +2 x3 =17 all vars ≥ 0 One can recover x2 from y2, y3.

Another Example Exercise: transform the following to standard form (maximization): Minimize x1 + 3x2 Subject to 2x1 + 5x2 ≤ 12 x1 + x2 ≥ 1 x1 ≥ 0 Perform the transformation with your partner

Preview of the Simplex Algorithm maximize subject to

LP Canonical Form = LP Standard Form + Jordan Canonical Form z is not a decision variable The basic variables are x3 and x4. The non-basic variables are x1 and x2. The basic feasible solution is x1 = 0, x2 = 0, x3 = 6, x4 = 2

For each constraint there is a basic variable Constraint 1: basic variable is x3 Constraint 2: basic variable is x4 The basis consists of variables x3 and x4

Optimality Conditions Preview Note: z = -3x1 + 2x2 Obvious Fact: If one can improve the current basic feasible solution x, then x is not optimal. Idea: assign a small value to just one of the non-basic variables, and then adjust the basic variables.

The current basic feasible solution (bfs) is not optimal! If there is a positive coefficient in the z row, the basis is not optimal** Recall: z = -3x1 + 2x2 Increase x2 to ∆ > 0. Let x1 stay at 0. What happens to x3, x4 and z? .

Optimality Conditions (note that the data is different here) Important Fact. If there is no positive coefficient in the z row, the basic feasible solution is optimal! z = -2x1 - 4x2 + 8. Therefore z ≤ 8 for all feasible solutions. But z = 8 in the current basic feasible solution This basic feasible solution is optimal!

Let x2 = ∆. How large can ∆ be? What is the solution after changing x2? What is the value of ∆ that maximizes z, but leaves a feasible solution? Fact. The resulting solution is a basic feasible solution for a different basis. ∆ = 1.

Pivoting to obtain a better solution New Solution: basic variables are x2 and x3. Nonbasics: x1 and x4. If we pivot on the coefficient 2, we obtain the new basic feasible solution.

Summary of Simplex Algorithm Start in canonical form with a basic feasible solution Check for optimality conditions If not optimal, determine a non-basic variable that should be made positive Increase that non-basic variable, and perform a pivot, obtaining a new bfs Continue until optimal (or unbounded).

OK. Let’s iterate again. z = x1 - x2 + 2 The cost coefficient of x1 is positive. Set x1 = ∆ and x4 = 0. How large can ∆ be?

A Digression: What if we had a problem in which ∆ could increase to infinity? Suppose we change the 3 to a –3. Set x1 = ∆ and x4 = 0. How large can ∆ be? If the non-cost coefficients in the entering column are ≤ 0, then the solution is unbounded

End Digression: Perform another pivot What is the largest value of ∆ ? ∆ = 1 Variable x1 becomes basis, x3 becomes nonbasic. Pivot on the coefficient with a 3.

Check for optimality There is no positive coefficient in the z-row. The current basic feasible solution is optimal!

Summary of Simplex Algorithm Again Start in canonical form with a basic feasible solution 1Check for optimality conditions Is there a positive coefficient in the cost row? If not optimal, determine a non-basic variable that should be made positive Choose a variable with a positive coef. in the cost row. increase that non-basic variable, and perform a pivot, obtaining a new bfs We will review this step, and show a shortcut Continue until optimal (or unbounded).

Performing a “Pivot”. Towards a shortcut. z = 2x1 + 3 Exercise: to do with your partner. 1. Determine how large ∆ can be. 2. Determine the next solution. 3. Determine what coefficient should be pivoted on. 4. See if there is a shortcut for finding the coefficient.

More on performing a pivot To determine the column to pivot on, select a variable with a positive cost coefficient To determine a row to pivot on, select a coefficient according to a minimum ratio rule Carry out a pivot as one does in solving a system of equations.

Next Lecture Review of the simplex algorithm Formalizing the simplex algorithm How to find an initial basic feasible solution, if one exists A proof that the simplex algorithm is finite (assuming non-degeneracy)