1 Retransmission Repeat: Simple Retransmission Permutation Can Resolve Overlapping Channel Collisions Li (Erran) Li Bell Labs, Alcatel-Lucent Joint work.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Advanced Piloting Cruise Plot.
All Rights Reserved © Alcatel-Lucent 2006, ##### Design Issues for Wireless Networks Across Diverse and Fragmented Spectrum Collaborators: Bell Labs India:
Spectrum Sensing and Identification
1 Chapter 3 Digital Communication Fundamentals for Cognitive Radio Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski,
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 11 Information.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 6 Agile.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 5 Author: Julia Richards and R. Scott Hawley.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Performance Evaluation Methodology & Key Technologies of New Generation Broadband Wireless Access Networking Zhiwei Gao Broadband Wireless Communication.
Doc.: IEEE /0111r0 Zhanji Wu, et. Al. December 2012 Submission A Physical-layer Network Coding Relay scheme for IEEE Date: Authors:
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
Iterative Equalization and Decoding
1 Multi-Channel Wireless Networks: Capacity and Protocols Nitin H. Vaidya University of Illinois at Urbana-Champaign Joint work with Pradeep Kyasanur Chandrakanth.
Efficient Error Estimating Coding: Feasibility and Applications Binbin Chen Ziling Zhou Yuda Zhao Haifeng Yu School of Computing National University of.
Wireless Networks Should Spread Spectrum On Demand Ramki Gummadi (MIT) Joint work with Hari Balakrishnan.
Towards Collision Detection in Wireless Networks Souvik Sen, Naveen Santhapuri, Romit Roy Choudhury, Srihari Nelakuditi.
1 The Case for Heterogeneous Wireless MACs Chun-cheng Chen Haiyun Luo Dept. of Computer Science, UIUC.
Interference Avoidance and Control Ramki Gummadi (MIT) Joint work with Rabin Patra (UCB) Hari Balakrishnan (MIT) Eric Brewer (UCB)
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
ZMQS ZMQS
Università degli Studi di Firenze 08 July 2004 COST th MCM - Budapest, Hungary 1 Cross-layer design for Multiple access techniques in wireless communications.
A Bandwidth Allocation/Sharing/Extension Protocol for Multimedia Over IEEE Ad Hoc Wireless LANs Shiann-Tsong Sheu and Tzu-fang Sheu IEEE JOURNAL.
Richmond House, Liverpool (1) 26 th January 2004.
BT Wholesale October Creating your own telephone network WHOLESALE CALLS LINE ASSOCIATED.
ABC Technology Project
AMES-Cloud: A Framework of Adaptive Mobile Video Streaming and Efficient Social Video Sharing in the Clouds 作者:Xiaofei Wang, MinChen, Ted Taekyoung Kwon,
Fine-grained Spectrum Adaptation in WiFi Networks
Squares and Square Root WALK. Solve each problem REVIEW:
Graphs, representation, isomorphism, connectivity
Doc.: IEEE /1355r2 11ah Submission Date: Authors: Nov 2012 James Wang, MediaTek Slide 1.
Doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 1 IEEE Wireless Coexistence TAG Steve Shellhammer
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
1 S Digital Communication Systems Advanced Modulation and Random Access Techniques.
25 seconds left…...
Test B, 100 Subtraction Facts
Multistage Spectrum Sensing for Cognitive Radios UCLA CORES.
Week 1.
We will resume in: 25 Minutes.
A SMALL TRUTH TO MAKE LIFE 100%
1 Unit 1 Kinematics Chapter 1 Day
TASK: Skill Development A proportional relationship is a set of equivalent ratios. Equivalent ratios have equal values using different numbers. Creating.
AirTrack: Locating Non-WiFi Interferers using Commodity WiFi Hardware Ashish Patro, Shravan Rayanchu, Suman Banerjee University of Wisconsin-Madison Sep.
How Cells Obtain Energy from Food
1 Understanding and Mitigating the Impact of RF Interference on Networks Ramki Gummadi (MIT), David Wetherall (UW) Ben Greenstein (IRS), Srinivasan.
VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
Hitchhike: Riding Control on Preambles Xiaoyu Ji Xiaoyu Ji, Jiliang Wang, Mingyan Liu, Yubo Yan, Panlong Yang and Yunhao Liu INFOCOM, 2014, Toronto Hong.
Overcoming the Antennas-Per-AP Throughput Limit in MIMO Shyamnath Gollakota Samuel David Perli and Dina Katabi.
Link Layer: Wireless Mesh Networks Capacity Y. Richard Yang 11/13/2012.
1 Wireless Collisions: From Avoidance, to Recovery, to Creation Erran Li Aug
Decoding Collisions Shyamnath Gollakota Dina Katabi.
Cross-Layer Approach to Wireless Collisions Dina Katabi.
Richard Alimi, L. Erran Li, Ramachandran Ramjee, Harish Viswanathan, Y
Wireless Communication
Decoding Collisions Shyamnath Gollakota Dina Katabi.
Presentation transcript:

1 Retransmission Repeat: Simple Retransmission Permutation Can Resolve Overlapping Channel Collisions Li (Erran) Li Bell Labs, Alcatel-Lucent Joint work with: Junliang Liu(MSR,Beijing), Kun Tan(MSR, Beijing), Harish Viswanathan (Bell Labs), Yang Richard Yang (Yale)

2 2 Talk Outline Wireless networks with overlapping channels g overlapping channel collision problem Remap basic idea Remap details Evaluation Conclusion and future work

3 Wireless networks with overlapping channels Chaotically deployed WiFi networks Each user chooses its own channel Planned WiFi networks Due to shortage of orthogonal channels, partially overlapped channels are beneficial [Misra et al, SIGMETRICS06] WiFi networks built on digital white space, e.g. WhiteFi [Bahl et al. SIGCOMM09]

g overlapping channel collision problem Bob AP a on channel C a Collision! Alice AP b on channel C b Collision! Chuck

g overlapping channel collision problem Bob AP a on channel C a More Collision! Alice AP b on channel C b More Collision! Chuck Retransmission

background Using g as an example Each channel has 4 groups of subcarriers: C 1 consists of G 1, G 2, G 3, G 4 ; C 2 consists of G 2, G 3, G 4, G 5 C 1 and C 2 are overlapping adjacent channels; C 1 and C 3 are overlapping non-adjacent channels Bits are assigned to subcarriers E.g. bit sequences A i is assigned to subcarrier G i, i=1,2,3,4 Subcarrier Group G1G1 G2G2 G3G3 G4G4 A1A1 A2A2 A3A3 A4A4

7 7 Remap basic idea: structured permutation Subcarrier Group G1G1 G2G2 G3G3 G4G4 A1A1 A2A2 A3A3 A4A4 Mapping π 1 A4A4 A3A3 A2A2 A1A1 Mapping π 2 A2A2 A1A1 A4A4 A3A3 Mapping π 3 A3A3 A4A4 A1A1 A2A2 Mapping π 4

8 How permutation helps Non-matching collisions on adjacent channels C 1 and C 2 Subcarrier Group G1G1 G2G2 G3G3 G4G4 A1A1 A2A2 A3A3 A4A4 1 st transmission 2 nd transmission A4A4 A3A3 A2A2 A1A1 A2A2 A1A1 A4A4 A3A3 3 rd transmission A3A3 A4A4 A1A1 A2A2 4 th transmission

9 9 How permutation helps (contd) Non-matching collisions on non-adjacent channels C 1 and C 3 Subcarrier Group G1G1 G2G2 G3G3 G4G4 A1A1 A2A2 A3A3 A4A4 1 st transmission 2 nd transmission A4A4 A3A3 A2A2 A1A1

10 Remap basic idea: Matching-collision setting Collision! Alice Bob Collision! AP a on channel C a AP b on channel C b Matching collisions on adjacent channels

11 Remap for matching collisions Matching collisions on adjacent channels C 1 and C 2 A1A1 A2A2 A3A3 A4A4 B5B5 B2B2 B3B3 B4B4 Subcarrier Group G1G1 G2G2 G3G3 G4G4 G5G5 A4A4 A3A3 A2A2 A1A1 B2B2 B5B5 B4B4 B3B3 G1G1 G2G2 G3G3 G4G4 G5G5 Decode A 1 Re-encode A 1 on G 4 Decoded bits: Subtract A 1 A1A1 Decode B 3 Re-encode B 3 on G 3 Subtract B 3 B3B3 Decode A 3 A3A3 Subtract A 3 Re-encode A 3 on G 2 Subtract A 3 Decode B 5 Subtract B 5 B5B5

12 Remap for matching collisions: Decoding graph Decoding graph of collision at adjacent channels C 1 and C 2 A1A1 A1A1 B3B3 B3B3 A3A3 A3A3 B5B5 Re-encode Subtract A4A4 A4A4 B4B4 B4B4 A2A2 A2A2 B2B2 1 st collision 2 nd Collision 1 st collision 2 nd Collision

13 Remap for matching collisions: a time-frequency view collisions at adjacent channels C 1 and C 2 : a time and frequency view PbPb 1 2 A1A1 A2 A2 A3A3 A4A4 S1S1 S2S2 SnSn Time Freq PaPa B5B5 B2 B2 B3B3 B4B4 A4A4 A3 A3 A2A2 A1A1 S1S1 S2S2 SnSn B2B2 B5 B5 B4B4 B3B3 P b P a G1G1 G3G3 G2G2 G5G5 G4G4 G2G

14 Remap for matching collisions Theorem on a pair of matching collisions: Assume that Alice and Bob use different permutations for the two transmissions, Alices AP and Bobs AP can each decode both packets despite collisions.

15 Remap Details Detecting collision Correlation to detect collision Energy detection to determine which groups energy has no change before and after the correlation peak Detecting matching collision Correlating subcarrier group G i and its remapped subcarriers Detecting modulation Cannot decode PLCP header of Bobs packet Solution: raw sample subtraction for the first pass

16 Remap Details (contd) Loss of orthogonality Carrier frequency offset Desired symbol and interfering symbol unalignment Desired signal at subcarrier i: Interfering signal at subcarrier i+m: Aligned interference symbols on non-adjacent subcarriers have zero Interference energy.

17 Remap Details (contd) Loss of orthogonality Carrier frequency offset Desired symbol and interfering symbol unalignment Desired signal at subcarrier i: Interfering signal at subcarrier i+m: Interference energy: The energy is 19dB lower if m=4; 21dB lower if m=5

18 Remap Details (contd) Techniques dealing with loss of orthogonality Iterative interference cancellation Exploiting uneven interference of subcarriers

19 Evaluation Experimental setup for non-matching collisions: Use MSA Sora software-radio platform for g Fix Alice at channel 3 For adjacent-channel collision test, Bob (the interferer) is at channel 4; for non-adjacent channel collision test, Bob is at channel 5 For each packet, Alice transmits the original and 3 remapped versions Alice and Bob continuously transmit for 100 ms; data collected is called a dump 100 dumps are performed

20 Evaluation (contd) Segment samples in each dump into groups of 4 packets each Decode each group, success if pass CRC check Performance metric Normalized throughput: actual number of decoded packets divided by the ideal number of decoded packets

21 Evaluation: non-adjacent channel SNR measured at receiver tuned to channel 3 Almost no packets can be decoded using successive interference cancellation

22 Non-adjacent channel: scatter plot of second experiment Evaluation: non-adjacent channel (contd)

23 Evaluation: Adjacent Channel SNR measured at receiver tuned to channel 3 Almost no packets can be decoded using successive interference cancellation

24 Conclusion and future work Generalize Remap to other channel structures Investigate techniques that deal with loss-of- orthogonality issue Evaluate how well matching collision detection and decoding work Extend Remap to dynamic spectrum access networks