An Analytical Study of Low Delay Multi-tree-based Overlay Multicast György Dán and Viktória Fodor School of Electrical Engineering KTH, Royal Institute.

Slides:



Advertisements
Similar presentations
Clustering of Source/Channel Rate Allocations for Receiver-driven Multicast under a Limited Number of Streams Philip A. Chou, Microsoft Research Kannan.
Advertisements

An Alliance based Peering Scheme for P2P Live Media Streaming Darshan Purandare Ratan Guha University of Central Florida August 31, P2P-TV, Kyoto.
Technische universiteit eindhoven 1 Problem 16: Design-space Exploration Jeroen Voeten, Bart Theelen Eindhoven University of Technology Embedded Systems.
1 EL736 Communications Networks II: Design and Algorithms Class1: Introduction Yong Liu 09/05/2007.
Communications Research Centre (CRC) Defence R&D Canada – Ottawa 1 Properties of Mobile Tactical Radio Networks on VHF Bands Li Li & Phil Vigneron Communications.
Data and Computer Communications
Playback delay in p2p streaming systems with random packet forwarding Viktoria Fodor and Ilias Chatzidrossos Laboratory for Communication Networks School.
Playback-buffer Equalization For Streaming Media Using Stateless Transport Prioritization By Wai-tian Tan, Weidong Cui and John G. Apostolopoulos Presented.
On Large-Scale Peer-to-Peer Streaming Systems with Network Coding Chen Feng, Baochun Li Dept. of Electrical and Computer Engineering University of Toronto.
Playback-buffer Equalization for Streaming Media using Stateless Transport Prioritization Dan Tan, HPL, Palo Alto Weidong Cui, UC Berkeley John Apostolopoulos,
David Ripplinger, Aradhana Narula-Tam, Katherine Szeto AIAA 2013 August 21, 2013 Scheduling vs Random Access in Frequency Hopped Airborne.
Receiver-driven Layered Multicast S. McCanne, V. Jacobsen and M. Vetterli University of Calif, Berkeley and Lawrence Berkeley National Laboratory SIGCOMM.
Priority Queuing Achieving Flow ‘Fairness’ in Wireless Networks Thomas Shen Prof. K.C. Wang SURE 2005.
Resilient Peer-to-Peer Streaming Paper by: Venkata N. Padmanabhan Helen J. Wang Philip A. Chou Discussion Leader: Manfred Georg Presented by: Christoph.
Computer Science 1 ShapeShifter: Scalable, Adaptive End-System Multicast John Byers, Jeffrey Considine, Nicholas Eskelinen, Stanislav Rost, Dmitriy Zavin.
Receiver-driven Layered Multicast S. McCanne, V. Jacobsen and M. Vetterli SIGCOMM 1996.
Rate Distortion Optimized Streaming Maryam Hamidirad CMPT 820 Simon Fraser Univerity 1.
Nick McKeown CS244 Lecture 6 Packet Switches. What you said The very premise of the paper was a bit of an eye- opener for me, for previously I had never.
A Comparison of Layering and Stream Replication Video Multicast Schemes Taehyun Kim and Mostafa H. Ammar.
Network Coding for Large Scale Content Distribution Christos Gkantsidis Georgia Institute of Technology Pablo Rodriguez Microsoft Research IEEE INFOCOM.
Service Differentiated Peer Selection An Incentive Mechanism for Peer-to-Peer Media Streaming Ahsan Habib, Member, IEEE, and John Chuang, Member, IEEE.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
CoolStreaming/DONet: A Data- driven Overlay Network for Peer- to-Peer Live Media Streaming INFOCOM 2005 Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak- Shing.
1 Performance Evaluation of Computer Networks Objectives  Introduction to Queuing Theory  Little’s Theorem  Standard Notation of Queuing Systems  Poisson.
PROMISE: Peer-to-Peer Media Streaming Using CollectCast M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava ACM Multimedia 2003, November 2003.
1March -05 Jiangchuan Liu with Xinyan Zhang, Bo Li, and T.S.P.Yum Infocom 2005 CoolStreaming/DONet: A Data-Driven Overlay Network for Peer-to-Peer Live.
An Alliance based PeeringScheme for P2P Live Media Streaming An Alliance based Peering Scheme for P2P Live Media Streaming Darshan Purandare Ratan Guha.
Understanding Mesh-based Peer-to-Peer Streaming Nazanin Magharei Reza Rejaie.
Adaptive Delay Aware Error Control for Internet telephony Catherine Boutremans Jean-Yves Le Boudec IP Telephony Workshop’2001 Institute for computer Communication.
1 An Overlay Scheme for Streaming Media Distribution Using Minimum Spanning Tree Properties Journal of Internet Technology Volume 5(2004) No.4 Reporter.
Scalable Live Video Streaming to Cooperative Clients Using Time Shifting and Video Patching Meng Guo and Mostafa H. Ammar INFOCOM 2004.
Adaptive Playout Scheduling Using Time- scale Modification in Packet Voice Communications Yi J. Liang, Nikolaus Farber, Bernd Girod Information Systems.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Optimal peer-to-peer broadcasting schemes Laurent Massoulié Thomson Research, Paris Joint work with A. Twigg, C. Gkantsidis and P. Rodriguez.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Core Stateless Fair Queueing Stoica, Shanker and Zhang - SIGCOMM 98 Rigorous fair Queueing requires per flow state: too costly in high speed core routers.
Enhancing TCP Fairness in Ad Hoc Wireless Networks Using Neighborhood RED Kaixin Xu, Mario Gerla University of California, Los Angeles {xkx,
Internet Queuing Delay Introduction How many packets in the queue? How long a packet takes to go through?
Diffusion Early Marking Department of Electrical and Computer Engineering University of Delaware May / 2004 Rafael Nunez Gonzalo Arce.
Exploring VoD in P2P Swarming Systems By Siddhartha Annapureddy, Saikat Guha, Christos Gkantsidis, Dinan Gunawardena, Pablo Rodriguez Presented by Svetlana.
1 © 2008 Nokia continous_scheduling_fmn_2008 / / JAk Continuous Scheduling for Data-Driven Peer-to-Peer Streaming Jyrki Akkanen Peer-to-peer.
Chun-Yuan Chang, Cheng-Fu Chou * and Ming-Hung Chen Presenter: Prof. Cheng-Fu Chou National Taiwan University
Computer Networks: Multimedia Applications Ivan Marsic Rutgers University Chapter 3 – Multimedia & Real-time Applications.
Scheduling P2P Multimedia Streams: Can We Achieve Performance and Robustness? Luca Abeni, Csaba Kiraly, Renato Lo Cigno DISI – University of Trento, Italy.
Improving QoS Support in Mobile Ad Hoc Networks Agenda Motivations Proposed Framework Packet-level FEC Multipath Routing Simulation Results Conclusions.
Distributing Layered Encoded Video through Caches Authors: Jussi Kangasharju Felix HartantoMartin Reisslein Keith W. Ross Proceedings of IEEE Infocom 2001,
Overlay Network Physical LayerR : router Overlay Layer N R R R R R N.
Kamal Singh, Árpád Huszák, David Ros, César Viho and Jeney Gábor
Computer Networks Performance Metrics. Performance Metrics Outline Generic Performance Metrics Network performance Measures Components of Hop and End-to-End.
11 Experimental and Analytical Evaluation of Available Bandwidth Estimation Tools Cesar D. Guerrero and Miguel A. Labrador Department of Computer Science.
Effects of P2P Streaming on Video Quality Csaba Kiraly, Luca Abeni, Renato Lo Cigno DISI – University of Trento, Italy
1 IEEE Meeting July 19, 2006 Raj Jain Modeling of BCN V2.0 Jinjing Jiang and Raj Jain Washington University in Saint Louis Saint Louis, MO
2007/03/26OPLAB, NTUIM1 A Proactive Tree Recovery Mechanism for Resilient Overlay Network Networking, IEEE/ACM Transactions on Volume 15, Issue 1, Feb.
V. Fodor and Gy. Dan, KTH - Marholmen 2002 End-to-end control for audio-visual communication Viktoria Fodor and György Dán Laboratory for Communication.
Deadline-based Resource Management for Information- Centric Networks Somaya Arianfar, Pasi Sarolahti, Jörg Ott Aalto University, Department of Communications.
On Reducing Mesh Delay for Peer- to-Peer Live Streaming Dongni Ren, Y.-T. Hillman Li, S.-H. Gary Chan Department of Computer Science and Engineering The.
Brief Announcement : Measuring Robustness of Superpeer Topologies Niloy Ganguly Department of Computer Science & Engineering Indian Institute of Technology,
Indian Institute of Technology Bombay 1 Communication Networks Prof. D. Manjunath
A Comparison of RaDiO and CoDiO over IEEE WLANs May 25 th Jeonghun Noh Deepesh Jain A Comparison of RaDiO and CoDiO over IEEE WLANs.
Internet Traffic Engineering Motivation: –The Fish problem, congested links. –Two properties of IP routing Destination based Local optimization TE: optimizing.
Courtesy Piggybacking: Supporting Differentiated Services in Multihop Mobile Ad Hoc Networks Wei LiuXiang Chen Yuguang Fang WING Dept. of ECE University.
Optimization-based Cross-Layer Design in Networked Control Systems Jia Bai, Emeka P. Eyisi Yuan Xue and Xenofon D. Koutsoukos.
PATH DIVERSITY WITH FORWARD ERROR CORRECTION SYSTEM FOR PACKET SWITCHED NETWORKS Thinh Nguyen and Avideh Zakhor IEEE INFOCOM 2003.
OverQos: An Overlay based Architecture for Enhancing Internet Qos L Subramanian*, I Stoica*, H Balakrishnan +, R Katz* *UC Berkeley, MIT + USENIX NSDI’04,
Kaixin Xu, Mario Gerla University of California, Los Angeles {xkx,
Reliability Gain of Network Coding - INFOCOM 08
A Study of Group-Tree Matching in Large Scale Group Communications
Networked Real-Time Systems: Routing and Scheduling
Horizon: Balancing TCP over multiple paths in wireless mesh networks
2019/9/14 PPSP Survey.
Presentation transcript:

An Analytical Study of Low Delay Multi-tree-based Overlay Multicast György Dán and Viktória Fodor School of Electrical Engineering KTH, Royal Institute of Technology Stockholm, Sweden Peer-to-Peer Streaming and IP-TV Workshop

Motivation Live peer-to-peer streaming Many proposed systems Push-based vs. Pull-based Tree-based vs. mesh-based vs. unstructured Multi-hop data delivery Failures – node departures, packet losses Delivery time hard to predict Playback delay and playout buffer dimensioning

Does playback delay matter? Designers goal: Control the playback delay (minimize?) Our goal: Identify sources of delay

A packets eye view of the overlay Four components of delay: D d =D p +D tr,o +D pr +D tr,i (a: pkt size, C in : input bandwidth, C out : output bandwidth) R A spanning tree of the overlay traversed by a packet D pr D tr,i =W in +a/C in DpDp D tr,o =W out +a/C out DdDd Tree properties depend on Tree-based: Overlay maintenance Unstructured: Scheduling algorithm

One-hop propagation model Possession-propagation-reception DdDd 1 1 Layer l-1 Layer l h Possession probability h Per-hop delay Reception probability h

One-hop propagation model Possession-propagation-reception DdDd h 1 h 1 Layer l-1 Layer l h Possession probability Per-hop delay Reception probability

Multi-hop propagation model Without FEC Apply the one hop model to every layer Result is the convolution of the per-hop delays R With FEC Apply the one hop model to every layer Calculate the result iteratively

Multi-hop propagation model Probability of reception by time h in layer l for packet j Probability of possession by time h in layer l for packet j Source node – initial condition Numerical solution Converges Scalable A control theoretic interpretation: Dynamical system with Input signal Output signals

Multi-hop propagation model Probability of possession with playback delay b (playout deadline of packet j: h j =b+(j1)a/B) Probability of possession for arbitrary node and packet Inputs of the model Initial condition N l number of nodes in layer l F d (h) node-to-node delay distribution - Source playout strategy - Overlay structure - Scheduling, structure

Application – Multi-tree overlay Source and N nodes Source capacity > m*B t trees, each node forwards in d trees Retransmissions and FEC(n,k) for error control Packets sent at round-robin from the source R R R Tree 2Tree 3Tree 1 P1 P2 P3 h 1 j=1j=2j=3 Initial condition

Overlay structure Number of nodes per layer (N l ) Calculated recursively based on Node output capacity distribution Prioritization scheme Capacity allocation scheme Prioritization schemes Contribution based Contributors prioritized over non-contributors (NP) Priority proportional to potential contribution (P) Capacity allocation schemes In case of excess capacity Proportional contribution (MM) Non-proportional contribution (FU)

Node-to-node Delay Input link D tr,i =W in +a/C in W in waiting time of a packet in a G/D/1 queue Output link D tr,o =W out +uIdat/( r B), whereI [1, r /d] d.r.v W out waiting time as seen by an arriving batch of r /d packets in a GI X /D/1 queue Retransmissions Loss detection, etc Arrival processes What is a realistic model? h

Model validation Discrete event driven simulator Steady state Media server on a 10Mbps-20Mbps link (m=50) Low bitrate media, B=112kbps Nodes buffer 15s worth of packets Input and output capacity constraints Propagation delays Random network topology – GT-ITM Node churn for randomness Results shown for packet losses

Deterministic arrival process Inf.cap. C in = C out = 10 Mbps Inf.incap. C in =10 Mbps C out =128 kbps Fin.cap. C in = C out = 128kbps Number of trees influences the delay – is there an optimal number? D pr plays a minor role – but increasing importance N=10 4,p=0.1

Poisson arrival process Inf.cap. C in =C out =10Mbps Inf.incap. C in =10Mbps C out =128kbps Fin.cap. C in =C out =128kbps Queuing delay significant Decrease utilization N=10 4,p=0.1

Simulation Inf.incap. C in =10 Mbps C out =128 kbps Fin.cap. C in =C out =128 kbps Similar to deterministic arrival process N=10 4,p=0.1

FEC and retransmissions Dynamically adjust playback delay FEC cannot achieve (b)=1 But FEC can help to keep the playback delay low Scalability?

Capacity allocation and prioritization Scen.ShareC out [kbps] CH100%256 CI 65%128 35%512 Prioritization and uneven capacity allocation best: increases the average output capacity of the contributing nodes Inhomogeneous upload capacity can help to achieve better performance Capacity allocation MM: proportional FU: non-proportional Prioritization NP: contributor/non- contributor P: proportional to contribution FU+P MM+P N=10 4

Conclusion Main factors that determine the delay Average upload capacity of contributing nodes Waiting times in queues at the nodes The ways to decrease the end-to-end delay are decreasing the number of layers (by prioritization), FU allocation, and by increasing m as much as possible – no fairness... using an adequate number of trees (though using a few trees only might imperil the stability of the overlay for given n, k, p) dynamically adjusting the FEC redundancy using a bitrate not too close to E[C out ]

Open questions Application to pull-based systems Modeling tree structure and delay distributions Scalability in terms of delay Optimal chunk size and out-degree Easy to control in multi-tree-based overlays (?) How to control in a pull based overlay?

An Analytical Study of Low Delay Multi-tree-based Overlay Multicast György Dán and Viktória Fodor School of Electrical Engineering KTH, Royal Institute of Technology Stockholm, Sweden Peer-to-Peer Streaming and IP-TV Workshop