Warm – up 2. Inscribed Angles Section 6.4 Standards MM2G3. Students will understand the properties of circles. b. Understand and use properties of central,

Slides:



Advertisements
Similar presentations
Section 6.4 Inscribed Polygons
Advertisements

Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
Bellwork  A 10 foot piece of wire is cut into two pieces. One piece is bent to form a square. The other forms a circle inscribed in the square. How long.
Circles Chapter 10.
1 Lesson 6.3 Inscribed Angles and their Intercepted Arcs Goal 1 Using Inscribed Angles Goal 2 Using Properties of Inscribed Angles.
Chapter 10 Circles Section 10.3 Inscribed Angles U SING I NSCRIBED A NGLES U SING P ROPERTIES OF I NSCRIBED P OLYGONS.
Tangents to Circles (with Circle Review)
By: Justin Mitchell and Daniel Harrast. Inscribed angle- an angle whose vertex is on a circle and whose sides contain chords of the circle. Intercepted.
For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1)2)
10.3 Inscribed Angles Goal 1: Use inscribed angles to solve problems Goal 2: Use properties of inscribed polygons CAS 4, 7, 16, 21.
Inscribed Angles Section 10.5.
10.2– Find Arc Measures. TermDefinitionPicture Central Angle An angle whose vertex is the center of the circle P A C.
12.3 Inscribed Angles. Using Inscribed Angles An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.
6.4 Use Inscribed Angles and Polygons Quiz: Friday.
1 Sect Inscribed Angles Goal 1 Using Inscribed Angles Goal 2 Using Properties of Inscribed Angles.
Section 10.3 – Inscribed Angles
Geometry Section 10-4 Use Inscribed Angles and Polygons.
Warm-Up Find the area of the shaded region. 10m 140°
Chapter 10.4 Notes: Use Inscribed Angles and Polygons
9.4 Inscribed Angles Geometry. Objectives/Assignment Use inscribed angles to solve problems. Use properties of inscribed polygons.
10.4 Inscribed Angles 5/7/2010. Using Inscribed Angles An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
11-3 Inscribed Angles Learning Target: I can solve problems using inscribed angles. Goal 2.03.
Inscribed Angles 10.3 California State Standards
Warm Up Week 1. Section 10.3 Day 1 I will use inscribed angles to solve problems. Inscribed Angles An angle whose vertex is on a circle and whose.
Circle GEOMETRY Radius (or Radii for plural) The segment joining the center of a circle to a point on the circle. Example: OA.
Bell work 1 Find the measure of Arc ABC, if Arc AB = 3x, Arc BC = (x + 80º), and __ __ AB BC AB  BC AB = 3x º A B C BC = ( x + 80 º )
12.3 Inscribed Angles An angle whose vertex is on the circle and whose sides are chords of the circle is an inscribed angle. An arc with endpoints on the.
10.3 Inscribed Angles. Definitions Inscribed Angle – An angle whose vertex is on a circle and whose sides contain chords of the circle Intercepted Arc.
Section 10.3 Inscribed Angles. Inscribed Angle An angle whose vertex is on a circle and whose sides contain chords of the circle Inscribed Angle.
Inscribed Angles Inscribed Angles – An angle that has its vertex on the circle and its sides contained in chords of the circle. Intercepted – An angle.
Inscribed Angles Section 9-5. Inscribed Angles An angle whose vertex is on a circle and whose sides contain chords of the circle.
Inscribed Angles Section 10.3 Goal: To use inscribed angles to solve problems To use properties of inscribed polygons.
Inscribed Angles Using Inscribed Angles An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.
Inscribed angles [11.3] Objectives Students will be able to… Find the measure of an inscribed angle Find the measures of an angle formed by a tangent and.
Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle INTERCEPTED ARC INSCRIBED ANGLE.
Have your homework out and be ready to discuss any questions you had. Wednesday, February 6, 2013 Agenda No TISK or MM HW Questions (9-2 & 9-3) Lesson.
Section 9-5 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B C D are inscribed.
10.3 Inscribed Angles Geometry. Objectives/Assignment Reminder Quiz after this section. Use inscribed angles to solve problems. Use properties of inscribed.
Inscribed and Circumscribed Polygons Inscribed n If all of the vertices of a polygon lie on the circle, then the polygon is inscribed.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
10.3 Inscribed Angles Intercepted arc. Definition of Inscribed Angles An Inscribed angle is an angle with its vertex on the circle.
Section 10-3 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B D is an inscribed.
Use Inscribed Angles and Polygons Lesson Definitions/Theorem 10.7 BAC = ½(BC) Intercepted Arc Inscribed Angle A B C. Central Angle.
Topic 12-3 Definition Secant – a line that intersects a circle in two points.
Inscribed Angles. Challenge Problem F G I H E l D F G I H E l.
For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1)2)
Circles.
Geometry 11-4 Inscribed Angles
Do Now.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
11.3 Inscribed Angles Geometry.
Warm-Up For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1) 2)
USING INSCRIBED ANGLES
Warm up.
Daily Check For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1) 2)
Daily Check For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1) 2)
Section 10.3 Inscribed Angles
Warm-Up Determine whether arc is a major or minor arc.
10.3 Inscribed Angles.
Section 10.3 – Inscribed Angles
Inscribed Angles and Quadrilaterals
Warm up Find the missing measures: 130° D A R ° 60 C 230° B.
Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle
_____________: An angle whose vertex is on the circle and whose sides are chords of the circle
Circles and inscribed angles
Section 10.4 Use Inscribed Angles And Polygons Standard:
10.4 Inscribed Angles.
10.4 Use Inscribed ∡s and Polygons
Presentation transcript:

Warm – up 2.

Inscribed Angles Section 6.4

Standards MM2G3. Students will understand the properties of circles. b. Understand and use properties of central, inscribed, and related angles.

Essential Questions What are the important circle measurements?

Essential Questions How do I use inscribed angles to solve problems? How do I use properties of inscribed polygons?

Definitions Inscribed angle – an angle whose vertex is on a circle and whose sides contain chords of the circle Intercepted arc – the arc that lies in the interior of an inscribed angle and has endpoints on the angle inscribed angle intercepted arc

Measure of an Inscribed Angle Theorem If an angle is inscribed in a circle, then its measure is half the measure of its intercepted arc.

Example 1 Find the measure of the blue arc or angle. a. b.

Congruent Inscribed Angles Theorem If two inscribed angles of a circle intercept the same arc, then the angles are congruent.

Example 2

Definitions Inscribed polygon – a polygon whose vertices all lie on a circle. Circumscribed circle – A circle with an inscribed polygon. The polygon is an inscribed polygon and the circle is a circumscribed circle.

Inscribed Right Triangle Theorem If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.

Inscribed Quadrilateral Theorem A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

Example 3 Find the value of each variable. a. b.

Practice Pages – 18 even

Homework Page – 26 even