8 March 2011 -- subst for Roberta Stars. 8 March 2011 -- subst for Roberta.

Slides:



Advertisements
Similar presentations
E3 – Stellar distances. Parallax Parallax angle.
Advertisements

7B Stars … how I wonder what you are.. 7B Goals Tie together some topics from earlier in the semester to learn about stars: How do we know how far away.
Astronomical distances The SI unit for length, the meter, is a very small unit to measure astronomical distances. There units usually used is astronomy:
Introduction to Stars. Stellar Parallax Given p in arcseconds (”), use d=1/p to calculate the distance which will be in units “parsecs” By definition,
Chapter 11 Surveying the Stars. I.Parallax and distance. II.Luminosity and brightness Apparent Brightness (ignore “magnitude system” in book) Absolute.
… how I wonder what you are.
OPTION E - ASTROPHYSICS E3 Stellar distances Parallax method
Chapter 14 Surveying the Stars. Luminosity and Apparent Brightness.
Basic Properties of the Stars
Stellar Magnitudes and Exponentials. Exponents 5 2 = 5x5= = 6x6x6 = = 7x7x7x7 = = 1/4 2 = 1/16 = =
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 10 Measuring the Stars.
9 Stars … how I wonder what you are.. 9 Goals Stars are Suns. Are they: –Near? Far? –Brighter? Dimmer? –Hotter? Cooler? –Heavier? Lighter? –Larger? Smaller?
… how I wonder what you are.
8 Stars … how I wonder what you are.. 8 Goals Stars are Suns. Are they: –Near? Far? –Brighter? Dimmer? –Hotter? Cooler? –Heavier? Lighter? –Larger? Smaller?
Stars Properties: Brightness and Color Reasons for brightness: Proximity Temperature of star.
February 7, 2006 Astronomy Chapter 16: Analyzing Starlight.
February 14, 2006 Astronomy Chapter 18: Celestial Distances A Galaxy 150 Million Light Years From Earth.
Introduction to Astrophysics Lecture 8: Observational properties of stars.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
Telescopes (continued). Basic Properties of Stars.
Stellar Properties Brightness - combination of distance and L
Stellar Parallax & Electromagnetic Radiation. Stellar Parallax Given p in arcseconds (”), use d=1/p to calculate the distance which will be in units “parsecs”
The Pleiades Lab 6. The Pleiades An open cluster is a group of up to a few thousand stars that were formed from the same giant molecular cloud, and.
E3 – Stellar distances.
Distances of the Stars. Key Ideas Distance is the most important & most difficult quantity to measure in Astronomy Method of Trigonometric Parallaxes.
How Do Astronomers Measure the Brightness of a Star?  Stars vary greatly in brightness  Early peoples observed bright stars and grouped them into constellations.
A105 Stars and Galaxies Today’s APOD News Quiz Today
Stellar Properties from Red Giants to White Dwarfs.
Chapter 10 Measuring the Stars. Units of Chapter 10 The Solar Neighborhood Luminosity and Apparent Brightness Stellar Temperatures Stellar Sizes The Hertzsprung-Russell.
Homework: Parallax Given p in arcseconds (”), use d=1/p to calculate the distance which will be in units “parsecs” By definition, d=1pc if p=1”, so convert.
Astronomy Toolkit  Magnitudes  Apparent magnitude  Absolute magnitude  The distance equation  Luminosity and intensity  Units and other basic data.
Chapter 19 The Stars Distances to stars are measured using parallax.
Properties of Stars.
Distances in Space This Mini Lesson Will Cover: What units do astronomers use to measure vast distances in space?
Our Place in the Cosmos Lecture 10 Observed Properties of Stars.
Astronomical distances The SI unit for length, the metre, is a very small unit to measure astronomical distances. There units usually used is astronomy:
Chapter 8: Characterizing Stars. As the Earth moves around the Sun in its orbit, nearby stars appear in different apparent locations on the celestial.
All stars form in clouds of dust and gas. Balance of pressure: outward from core and inward from gravity.
Characteristics of Stars. Distances To The Stars Stars are separated by vast distances. Astronomers use units called light years to measure the distance.
Parallax through the ages. 1 PARSEC = distance in AU if the difference in degree measurements is 1 arcsecond (1/60 th of 1/60 th of a degree)
PHYS 205 Surveying the Stars PHYS 205 Parallax The apparent change in the direction of the remote object due to a change in the vantage point of the.
Chapter 11: Chapter 11: Characterizing Stars. How near is the closest star other than the Sun? How near is the closest star other than the Sun? Is the.
Class 4 : Basic properties of stars
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
How far away are the nearest stars? Which stars are they?
Goal: To understand how to find the brightness of stars and what they mean. Objectives: 1)To learn about Absolute brightness 2)To learn about the Magnitude.
Magnitude.
Prior Knowledge Questions (Do these BEFORE using the Gizmo.)
Chapter 22 Stars.
Ch. 28 The Stars Properties of Stars ???
Luminosity and Colour of Stars Michael Balogh Stellar Evolution (PHYS 375)
Chapter 27 Stars and Galaxies Section 1 Characteristics of Stars Notes 27-2.
Unit 1 Physics Detailed Study 3.2 Chapter 11: Astrophysics.
Chapter 10 Measuring the Stars. Star Cluster NGC ,000 light-years away.
Characteristics of Stars. Distances and Size Magnitude Elements Mass and Temperature.
Carpecaelum.com. Stellar Astronomy Cataloging the Stars.
Measuring the Stars How big are stars? How far away are they? How bright are they? How hot? How old, and how long do they live? What is their chemical.
Remember that stellar distances can be measured using parallax:
 Distance is the most important & most difficult quantity to measure in Astronomy  Method of Trigonometric Parallaxes  Direct geometric method of finding.
Properties of Stars. "There are countless suns and countless earths all rotating around their suns in exactly the same way as the seven planets of our.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Chapter 10 Measuring the Stars.
Chapter 19 The Stars Distances to stars are measured using parallax.
Distances -- stellar parallax
Stellar Properties from Red Giants to White Dwarfs
Stellar distances.
9. Distances in open space
… how I wonder what you are.
Stellar Astronomy Cataloging the Stars Star Names Proper Names Bayer Greek letters Flamsteed numbering system Henry Draper HD numbers S.A.O. numbers.
Celestial Distances A Galaxy 150 Million Light Years From Earth
Stellar position, distance, and properties
Presentation transcript:

8 March subst for Roberta Stars

8 March subst for Roberta

( PARENTHETICAL ) STAR NAMES SIRIUS  CMa ( Alpha Canis Majoris ) HR 2491 HD SAO and other STAR CATALOGS

8 March subst for Roberta DISTANCES OF STARS

8 March subst for Roberta DISTANCES OF STARS EARLIEST IDEA: PARALLAX

8 March subst for Roberta TRIGONOMETRIC PARALLAX

8 March subst for Roberta STELLAR PARALLAX

8 March subst for Roberta ( SOMETIMES IT’S CALLED ANNUAL PARALLAX )

8 March subst for Roberta PARALLAX GETS SMALLER AS DISTANCE GROWS LARGER ( and vice-versa )

8 March subst for Roberta

LET’S CHOOSE GOOD MEASUREMENT UNITS …

8 March subst for Roberta ANGLES 360 degrees ( 360 ° ) in a circle 60 arc-minutes ( 60 ) in 1 ° 60 arc-seconds ( 60  ) in 1 

8 March subst for Roberta ANGLES 360 degrees ( 360 ° ) in a circle 60 arc-minutes ( 60 ) in 1 ° 60 arc-seconds ( 60  ) in 1  so … 1,296,000 arc-seconds in a circle! An arc-second ( arcsec ) is small;

8 March subst for Roberta ANGLES 360 degrees ( 360 ° ) in a circle 60 arc-minutes ( 60 ) in 1 ° 60 arc-seconds ( 60  ) in 1  1 inch subtends 1 arcsec at a distance of 3.3 miles.

8 March subst for Roberta ANGLES 360 degrees ( 360 ° ) in a circle 60 arc-minutes ( 60 ) in 1 ° 60 arc-seconds ( 60  ) in 1  we measure parallaxes in arcsec.

8 March subst for Roberta UNITS FOR DISTANCES ASTRONOMICAL UNIT ( AU ) = AVERAGE DISTANCE OF SUN = RADIUS OF EARTH’S ORBIT

8 March subst for Roberta UNITS FOR DISTANCES ASTRONOMICAL UNIT ( AU ) = AVERAGE DISTANCE OF SUN = RADIUS OF EARTH’S ORBIT = about 150 million kilometers = about 93 million miles

8 March subst for Roberta

STAR’S DISTANCE = _____________________ 206,265 AU PARALLAX IN ARCSEC

8 March subst for Roberta UNITS FOR DISTANCES ASTRONOMICAL UNIT ( AU ) = AVERAGE DISTANCE OF SUN = RADIUS OF EARTH’S ORBIT

8 March subst for Roberta UNITS FOR DISTANCES 1 PARSEC = 206,265 AU (explain) usually abbrev. “PC”

8 March subst for Roberta STAR’S DISTANCE = _____________________ 1 PARSEC PARALLAX IN ARCSEC

8 March subst for Roberta UNITS FOR DISTANCES 1 PARSEC = 206,265 AU = almost 31 trillion kilometers, urggh.

8 March subst for Roberta By the way … 1 parsec = 3.26 LIGHTYEARS. Nearest star is 1.3 pc or 4.3 ly.

8 March subst for Roberta c. 1590: TYCHO BRAHE TRIED TO DETECT PARALLAX AND FAILED. (explain)

8 March subst for Roberta c. 1680: NEWTON PREDICTED PARALLAX WOULD BE VERY SMALL, D ( nearest star ) = maybe 300,000 AU (explain how he guessed)

8 March subst for Roberta

SUCCESSFUL PARALLAXES, AROUND 1839: 61 CYGNI (BESSEL, GERMANY) VEGA (STRUVE, RUSSIA) ALPHA CENTAURI (HENDERSON, S.AFRICA)

8 March subst for Roberta ALPHA CENTAURI A, B, C DISTANCE = 270,000 AU 1.3 PC ( parsec ) 4.3 LY ( lightyear )

8 March subst for Roberta ALPHA CENTAURI 9 MILES

8 March subst for Roberta THE THREE STARS OF ALPHA CENTAURI A : YELLOW, SOMEWHAT BRIGHTER THAN THE SUN; B : ORANGE, 40% AS BRIGHT AS THE SUN; C : RED, 1 / AS BRIGHT AS THE SUN. “PROXIMA CENTAURI”

8 March subst for Roberta PARALLAX DISTANCES SHOWED THAT STARS ARE NOT ALIKE

8 March subst for RobertaAst 1001, 29 March KD HIPPARCOS SATELLITE MEASURED ULTRA - PRECISE PARALLAXES

8 March subst for Roberta

NEXT: MOTIONS OF THE STARS IN SPACE

8 March subst for Roberta PROPER MOTION OF BARNARD’S STAR ( 6 L.Y. AWAY )

8 March subst for Roberta THE SUN, FOR EXAMPLE, MOVES ABOUT 15 KILOMETERS PER SECOND = 33,000 M.P.H. = 3 A.U. PER YEAR.

8 March subst for Roberta

“STATISTICAL PARALLAX” BASED ON PROPER MOTIONS ( explain ) -- GOOD ONLY ON AVERAGE, BUT OK OUT TO ABOUT 5000 L.Y. --

8 March subst for Roberta REMEMBER THE DOPPLER EFFECT?

8 March subst for Roberta RADIAL VELOCITY measured with the Doppler effect … Examples …  20 km / s means the star is moving toward us ( “blueshift” ) + 15 km / s means it’s moving away ( “redshift” )

8 March subst for Roberta

WE QUOTE THE BRIGHTNESS OF EACH STAR AS A “MAGNITUDE”.

8 March subst for Roberta ABOUT 2100 YEARS AGO, HIPPARCHUS (= HIPPARCOS) MADE A LIST OF 1000 STARS...

8 March subst for Roberta ABOUT 2100 YEARS AGO, HIPPARCHUS (= HIPPARCOS) MADE A LIST OF 1000 STARS... BRIGHTEST: “STARS OF THE FIRST MAGNITUDE”. THEN “SECOND MAGNITUDE”, THIRD, ETC. FAINTEST WE CAN SEE: “SIXTH MAGNITUDE”.... simple “eye estimates”.

8 March subst for Roberta MANY CENTURIES LATER, ASTRONOMERS LEARNED HOW TO MEASURE THE STARS’ MAGNITUDES... for example -- Aldebaran... m = 0.85 (fairly bright) Tau Ceti HD (faint)

8 March subst for Roberta

THE MAGNITUDE SCALE TURNED OUT TO BE LOGARITHMIC -- LIKE DECIBELS USED TO MEASURE SOUND. 80 DECIBELS = 1 90 DB = DB = and so on.

8 March subst for Roberta THE MAGNITUDE SCALE IS LOGARITHMIC magnitude = = 39.8 (2.512 x fainter)

8 March subst for Roberta THE MAGNITUDE SCALE IS LOGARITHMIC magnitude = = 39.8 (2.512 x fainter) 3.0 = 15.8

8 March subst for Roberta THE MAGNITUDE SCALE IS LOGARITHMIC magnitude = = 39.8 (2.512 x fainter) 3.0 = = = = 1.0

8 March subst for Roberta THE MAGNITUDE SCALE IS LOGARITHMIC magnitude = = 39.8 (2.512 x fainter) 3.0 = = = = = etc.

8 March subst for Roberta THE MAGNITUDE SCALE IS LOGARITHMIC -- THE DIFFERENCE BETWEEN TWO STARS’ MAGNITUDES CORRESPONDS TO THE RATIO OF THEIR BRIGHTNESS. Example: star A has m = 2.3, star B has m = 7.3; Difference magnitudes. So star A is 100 x as bright as star B.

8 March subst for Roberta “APPARENT VISUAL MAGNITUDES” Sun: m = -27 Moon: -10 Venus: -4 Mars: -2.5 Sirius: -1.4 Vega: 0.0 Antares: 1.0 Polaris: 2.3

8 March subst for Roberta “APPARENT VISUAL MAGNITUDES” BRIGHTEST STAR (SIRIUS): m = th –BRIGHTEST STAR: +1.5 FAINTEST VISIBLE:... about 6.5 WITH BINOCULARS: about 8 6-INCH TELESCOPE: about 12 PLUTO: 14 LIMIT WITH MODERN DETECTORS ON BIG TELESCOPES:

8 March subst for Roberta MAGNITUDES ALSO GIVE COLORS. WE USE FILTERS, FOR INSTANCE ‘V’ = “visual”, yellow-green, ‘B’ = “blue” U B V R I J K L... filters

8 March subst for Roberta MAGNITUDES ALSO GIVE COLORS. WE USE FILTERS, FOR INSTANCE ‘V’ = “visual”, yellow-green, ‘B’ = “blue” ( B magnitude ) - ( V magnitude ) is a measure of the star’s color. B – V = blue, very hot = like the Sun = red, cool star

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF A STAR

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF A STAR upper-case M ( m is apparent magnitude.)

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF A STAR M = THE APPARENT MAGNITUDE m THAT THE STAR WOULD HAVE AT A STANDARD DISTANCE OF 10 PARSECS = 33 LIGHTYEARS

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF A STAR TO CALCULATE M, WE NEED TO KNOW BOTH m AND D.

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF STARS M FOR THE SUN = + 4.8

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF STARS M FOR THE SUN = FAINTEST RED DWARF STARS: M = + 18

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF STARS M FOR THE SUN = FAINTEST RED DWARF STARS: M = + 18 MOST LUMINOUS STARS: M = - 12

8 March subst for Roberta LUMINOSITY OR ABSOLUTE MAGNITUDE OF STARS M FOR THE SUN = FAINTEST RED DWARF STARS: M = + 18 MOST LUMINOUS STARS: M = - 12 OVERALL RANGE: 30 MAGNITUDES, = A LUMINOSITY FACTOR OF 1,000,000,000,000 ( A TRILLION )

8 March subst for Roberta