S. FREGONESE 19 juin 2004 HICUM WORKSHOP 2004 1/25 Scalable bipolar transistor modelling with HICUM L0 S. Frégonèse, D. Berger *, T. Zimmer, C. Maneux,

Slides:



Advertisements
Similar presentations
SiGe BiCMOS Device Modeling MURTY, SHERIDAN,AHLGREN, HARAMEHicum Users Group Meeting (BCTM2002) 1 Evaluation of HiCUM for Modeling DC, S-parameter and.
Advertisements

III-V HBT modeling, scaling and parameter extraction using TRADICA and HICUM Yves Zimmermann, Peter Zampardi, Michael Schroeter.
Transistors Fundamentals Common-Emitter Amplifier What transistors do
Topic 5 Bipolar Junction Transistors
ECE 442 Power Electronics1 Bipolar Junction Transistors (BJT) NPNPNP.
ECES 352 Winter 2007Ch. 7 Frequency Response Part 41 Emitter-Follower (EF) Amplifier *DC biasing ● Calculate I C, I B, V CE ● Determine related small signal.
Bertrand Ardouin Thomas Zimmer XMOD Technologies: Hicum toolkit & extraction services HICUM Workshop, September 2002, Monterey.
TRANSISTOR. TRANSISTOR Background and Introduction A semiconductor device that Amplifies, Oscillates, or Switches the flow of current between two terminals.
Announcements Assignment 2 due now Assignment 3 posted, due Thursday Oct 6 th First mid-term Thursday October 27 th.
Chapter 5 Bipolar Junction Transistors
Analytical and compact models of the ONO capacitance in embedded non-volatile flash devices Davide Garetto* †, Erwan Dornel*, Denis Rideau §, William F.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Bipolar Junction Transistors (BJT) NPNPNP. BJT Cross-Sections NPN PNP Emitter Collector.
Department of Information Engineering286 Transistor 3-layers device –npn (more common) –pnp (less common) N P N e b c P N P e b c.
Outline Noise Margins Transient Analysis Delay Estimation
Radio Frequency Amplifiers In this section of the course: Why do common emitter amplifiers often have a disappointingly low upper cut-off frequency ? Where.
CMOS VLSI Design4: DC and Transient ResponseSlide 1 EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters.
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 14 Lecture 14: Bipolar Junction Transistors Prof. Niknejad.
Single-Stage Integrated- Circuit Amplifiers
Noise and Delay Uncertainty Studies for Coupled RC Interconnects Andrew B. Kahng, Sudhakar Muddu † and Devendra Vidhani ‡ UCLA Computer Science Department,
FET ( Field Effect Transistor)
COMSATS Institute of Information Technology Virtual campus Islamabad
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled.
Chapter 5 BJT Circuits Dr.Debashis De Associate Professor West Bengal University of Technology.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
1 Bipolar Junction Transistor Models Professor K.N.Bhat Center for Excellence in Nanoelectronics ECE Department Indian Institute of Science Bangalore-560.
ECA1212 Introduction to Electrical & Electronics Engineering Chapter 5: Bipolar Junction Transistor by Muhazam Mustapha, October 2011.
Mextram 504 BJT model F. Yuan Advisor : Prof. C. W. Liu Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National.
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
Passive components and circuits
Self-heating investigation of bulk and SOI transistors
Two Stage Amplifier Design ENGI 242 ELEC 222. January 2004ENGI 242/ELEC 2222 HYBRID MODEL PI.
Reliable HICUM implementation in Eldo Mohamed Selim Device Modeling Team Mentor Graphics HICUM Workshop, June
Microelectronic Circuit Design McGraw-Hill Chapter 5 Bipolar Junction Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Chap.
Bipolar Junction Transistors (BJTs) The bipolar junction transistor is a semiconductor device constructed with three doped regions. These regions essentially.
1 Heterojunction Bipolar Transistors Heterojunction Bipolar Transistorsfor High-Frequency Operation D.L. Pulfrey Department of Electrical and Computer.
EXAMPLE 10.1 OBJECTIVE Solution
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Bipolar Junction Transistor (1) SD Lab. SOGANG Univ. BYUNGSOO KIM.
STMicroelectronics Computing transit time components from a regional analysis: A practical implementation 6 th European HICUM Workshop June 12,13, 2006.
Chapter 07 Electronic Analysis of CMOS Logic Gates
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 9 Frequency Response.
MALVINO Electronic PRINCIPLES SIXTH EDITION.
Bertrand Ardouin Thomas Zimmer Michael Schröter XMOD Technologies: Hicum toolkit & extraction services HICUM Workshop, June 6 - 7, Dresden.
Bipolar Junction Transistors (BJTs)
STMicroelectronics Determination of the collector resistance R CX of bipolar transistor N. Kauffmann, C. Raya, F. Pourchon, S. Ortolland, D. Celi 5 th.
Introduction to CMOS VLSI Design MOS devices: static and dynamic behavior.
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
Minimization in variation of output characteristics of a SOI MOS due to Self Heating Sahil M. BansalD.Nagchaudhuri B.E. Final Year, Professor, Electronics.
Chapter 4 Bipolar Junction Transistors
1 LECTURE 1: SMALL-SIGNAL HYBRID-Π EQUIVALENT CIRCUIT OF BIPOLAR TRANSISTOR (BJT) By: Syahrul Ashikin Azmi PPKSE.
SMALL-SIGNAL HYBRID-Π EQUIVALENT CIRCUIT. Content BJT – Small Signal Amplifier BJT complete Hybrid equivalent circuit BJT approximate Hybrid model Objectives.
Miller-OTA Opamp design
Lab Experiment: 3 Objectives: To understand the Transistor’s characteristics. Construct the Transistor circuit ( Common base and common emitter connection.
Chapter 4 DC Biasing–BJTs. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices and.
BJT Bipolar Junction Transistors (BJT) Presented by D.Satishkumar Asst. Professor, Electrical & Electronics Engineering
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Bipolar IC technology:
HECII-Workshop Munich, 12./13. February 2009 Measurement Strategy Workshop on Technology Selection for the SLHC Hadronic Endcap Calorimeter, Munich 2009.
Passive Integrated Elements Robert H. Caverly, Villanova University The creation of these notes was supported by a Grant from The National Science Foundation.
COURSE NAME: SEMICONDUCTORS Course Code: PHYS 473 Week No. 5.
SUB.TEACHER:- MR.PRAVIN BARAD NAME:-SAGAR KUMBHANI ( ) -VIKRAMSINH JADAV( ) -PARECHA TUSHAR( ) TOPIC:-LINEAR AMPLIFIER(BJT.
BJT Circuits Chapter 5 Dr.Debashis De Associate Professor
Chapter 2 Power Electronic Devices
Bipolar Junction Transistors (BJT)
7.1 Fundamentals of BJT Operation (Qualitative Analysis)
7.8 Frequency Limitations of Transistors
CHAPTER 59 TRANSISTOR EQUIVALENT CIRCUITS AND MODELS
Frequency response I As the frequency of the processed signals increases, the effects of parasitic capacitance in (BJT/MOS) transistors start to manifest.
Dr. Hari Kishore Kakarla ECE
Presentation transcript:

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Scalable bipolar transistor modelling with HICUM L0 S. Frégonèse, D. Berger *, T. Zimmer, C. Maneux, P. Y. Sulima, D. Céli * Laboratoire de Microélectronique IXL, FRANCE * ST Microelectronics, FRANCE

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Outlines Introduction –Geometry Scaling –Modelling strategy –Why HICUM L0 ? HICUM L0 & L2 –Similarity between L2 and L0 –L0 equations Applications –Extraction –Impact of emitter via resistances –Impact of corner rounding –DC & AC measurement and model comparison Conclusion Perspectives

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Introduction : Geometry scaling Transistor modelling with a function of emitter length and width as parameters –Circuit performances optimisation –Model many transistors with one parameter set Important parameter for scalable modelling of the internal transistor –Real length and width ( WE0 and LE0 ) Spacer have to be taken into account –Effective diffusion length under emitter window  C –Corner rounding Low size transistor –SIC window Internal & external base collector capacitances modelling Base Collector current E B C Mask r0r0 W E0 CC L E0

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Introduction : Modelling Strategy Scaling level 1Scaling level 2Scaling level 3 Scaling rulesimplanted in a program outside the model (Tradica [ *] ) simulator preprocessor language inside the model Model cardOne for each transistor One for all transistors Optimisation of circuit performances with W & L Depends on its implementation in the design kit Easy Modification of scaling rules Easy with Master Toolkit XMOD * EasyEasy for research with Verilog A Link between ICCAP and Model Easy with Master Toolkit XMOD * DifficultVery Easy

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Introduction : Why HICUM L0 ? A new model combining –Simplicity of Gummel Poon: Less computational effort (internal nodes number, L0 : 3,L2 : 5) Extraction is easier –Major features of HICUM Accurate charge description Self heating is taken into account Useful for: –Quick evaluation of the basic circuit functionality –For non critical transistor

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 HICUM L0 & L2 : Similarity between L0 and L2 Simplifications –Charge: Simplification of charge modelling in transfer current source DC and AC are uncorrelated. –Internal base node is suppressed External base resistance and internal base resistance are merged together External base-emitter capacitance and internal base-emitter capacitance are grouped together –Current source are merged: Peripheral and internal base-collector Peripheral and internal base-emitter –Others effects: Substrate network Parasistic transistor NQS effects Base-Emitter tunnelling current source

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 HICUM L0 & L2 : Similarity between L0 and L2 AC Charge formulation unchanged –Capacitance formulation –Transit time formulation At low & high current Critical current Internal base resistance: Temperature dependence & self heating Geometry dependent zero bias value is unchanged Bias variation function is simplified

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 HICUM L0 & L2 : L0 Equations -Transfer current source in HICUM L2 - Transfert current source in HICUM L0 - Low to medium current : -Low current: 2 scalable parameters 1 scalable parameter 1 constant parameter

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 HICUM L0 & L2 : L0 Equations - Charge increase for AC regime: Same equation as L2 - Charge increase for DC regime: AC et DC are uncorrelated f cs function parameter is extracted from R CI0 extraction ( from AC characteristics)

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : Extraction flow C BE, C BCi, C BCx, C CS  C and Collector current source (J cu, mcf) base-emitter & base- collector current source R E is extracted / R CX, R BX, R BI are calculated from layer resistivity Transit low current  0I,  0P, T BVL, D T0H Critical current parameters R CI0U,  C, V CES, V PT, V LIM Transit high current  EF0, G TE,  HCS, A LHC DC high current I QFHu,  FH

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : Extraction of Capacitance C BE =C BEpu P E0 +C BEsu A E0

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : Extraction of  C I C =J C (W E0 +2  C )(L E0 +2  C ) I C =0 if W E0 =-2  C Collector current versus emitter width for different V BE and V BC =0 V (measurement) E B C Mask r0r0 W E0 CC L E0

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications: Extraction of Transit time Split into one internal part and into one peripheral part: –I c =I i +I p= J i A E0 +J p P E –Q total = Q 0i + Q 0P –Internal charge: Q 0i =  0i I i –Peripheral charge: Q 0P =  0P I P Equivalent transit time   =Q total /I c Scalable model [1] : Extracted  0 values versus emitter area for different emitter sizes. (1: 0.25*1.45 µm², 2: 0.25*3.05 µm², 3: 0.25*6.25 µm², 4: 0.25*12.65 µm², 5: 0.25*25.45 µm², 6: 0.65*12.65 µm², 7: 1.45*12.65 µm²) [1] Michael Schröeter et al. IEEE solid states circuits, vol.31, n°10, oct 1996

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : Extraction of Critical current parameter Critical current –Models the transit frequency fall- off –Link to Kirk effect Collector doping Internal collector resistance: Current spreading in the collector with a  C angle Scalable model [1] Extracted R CI0 values versus emitter area for different emitter sizes. (1: 0.25*1.45 µm², 2: 0.25*3.05 µm², 3: 0.25*6.25 µm², 4: 0.25*12.65 µm², 5: 0.25*25.45 µm², 6: 0.65*12.65 µm², 7: 1.45*12.65 µm²) with f cs [1] Michael Schröeter et al. IEEE solid states circuits, vol.31, n°10, oct 1996

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : Impact of vias on the emitter resistance Number of vias and emitter width is not proportional: –Simple model doesn’t work ( ) –Number of vias has to be calculated versus the width with layout rules: W E0 = 0.25 µm Nb_via = 1 W E0 = 0.65 µm Nb_via = 1 W E0 = 1.45 µm Nb_via = 2 Gummel V BC =0 V for 3emitter sizes (0.25, 0.65, 1.45*12.65 µm²) (model 1: taking into account via; model 2: without via)

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : Impact of Corner rounding r W E0 L E0 CC r CC [2] [2] Michael Schröeter et al. IEEE solid states circuits, vol.34, n°8, oct 1999 With r 0 (maximum value) =W E0 /2 Emitter sizes 1: 0.25*0.65 µm², 2: 0.25*1.45 µm², 3: 0.25*3.05 µm², 4: 0.25*6.25 µm², 5: 0.25*12.65 µm², 6: 0.25*25.45 µm²

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Model is not physical But usefull for low size Applications : Impact of Corner rounding S1S1 r r r-w E /2 0 y LELE WEWE S Emitter sizes 1: 0.25*0.65 µm², 2: 0.25*1.45 µm², 3: 0.25*3.05 µm², 4: 0.25*6.25 µm², 5: 0.25*12.65 µm², 6: 0.25*25.45 µm²

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : DC measurement and model comparison BiCMOS 0.25 µm from STMicroelectronics 0.25*25.45 µm² 0.65*12.65 µm² 0.25*0.65 µm²

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : AC measurement and model comparison BiCMOS 0.25 µm from STMicroelectronics

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : AC measurement and model comparison Y parameters : Y=f(frequency,V CE =1.5 V) for 4 V BE (0.7 V, 0.8V, 0.9V, 1V) emitter size (0.25 * µm²) BiCMOS 0.25 µm from STMicroelectronics

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : AC measurement and model comparison Y parameters : Y=f(frequency,V CE =1.5 V) for 4 V BE (0.7 V, 0.8V, 0.9V, 1V) emitter size (0.25 * µm²) BiCMOS 0.25 µm from STMicroelectronics

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : AC measurement and model comparison Y parameters : Y=f(I C,V BC =0) for 3 widths (0.25 * µm²,0.65 * µm²,1.45 * µm²) 7 GHz BiCMOS 0.25 µm from STMicroelectronics

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Applications : AC measurement and model comparison Y parameters : Y=f(I C,V BC =0) for 3 widths (0.25 * µm²,0.65 * µm²,1.45 * µm²) 7 GHz BiCMOS 0.25 µm from STMicroelectronics

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Conclusion L0 can be enhanced (substrate network & Parasistic transistor) L0 has the Simplicity of Gummel Poon: Less computational effort Extraction is easier Electrical description is very good –Charge description But L2 is more precise for electrical description But L2 has convergence problems for : –Transient simulation with pulse for high slew rate Geometry Scaling with L0 can be realized This scalable model was used on a BiCMOS 0.25 µm STMicroelectronics technology. –DC and AC shows good agreements For different emitter size: –Width 0.25 µm -> 1.45 µm –Length 1.45 µm -> µm

S. FREGONESE 19 juin 2004 HICUM WORKSHOP /25 Perspectives Comparison of L0 model with measurement from –Very low size transistor –Faster transistor Enhancing model accuracy for specific physical effects (ex: High injection Barrier effects) SOI modelling