Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Quantum chemical studies on atmospheric sulfuric acid nucleation Theo Kurtén Division of Atmospheric Sciences Department of Physical Sciences University.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Microwave spectrum of furfuryl alcohol Roman A. Motiyenko, Manuel Goubet, Thérèse R. Huet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University.
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Galen Sedo Kenneth Leopold Group University of Minnesota A Microwave and ab initio Study of (CH 3 ) 3 CCN--SO 3.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Physique des Lasers, Atomes et Molécules
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Pulsed-jet discharge matrix isolation and computational study of Bromine atom complexes: Br---BrXCH 2 (X=H,Cl,Br) OSU 66 th International Symposium on.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Galen Sedo, Jamie Doran, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Study of the HNO 3 -(H 2 O) 3 Tetramer.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Fundamentals and Torsional Combination Bands of Two Isomers of the OCS-CO 2 Complex J. Norooz Oliaee, M. Dehghany, F. Mivehvar, Mahin Afshari, N. Moazzen-Ahmadi.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Microwave Spectroscopy Wave length ~ 1 cm to 100  m Wave number ~ 1 to 100 cm -1. Frequency ~ 3 x to 3 x Hz Energy ~ 10 to 1000 Joules/mole.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
International Symposium on Molecular Spectroscopy// June 26, 2015
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Rotational Spectroscopy of OCS in Superfluid Helium Nanodroplets Paul Raston, Rudolf Lehnig, and Wolfgang Jäger Department of Chemistry, University of.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
The CP-FTMW Spectrum of Verbenone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Fourier transform microwave spectra of n-butanol and isobutanol
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Fourier Transform Infrared Spectral
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
John Mullaney Newcastle University
1 MICROWAVE CHARACTERIZATION OF PROPIOLIC SULFURIC ANHYDRIDE AND TWO CONFORMERS OF ACRYLIC SULFURIC ANHYDRIDE C.J. Smith, Anna Huff, Becca Mackenzie, and.
Presentation transcript:

Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer

Sulfuric Acid Aerosols A principle source of sulfate-containing atmospheric particles High affinity for water and a high rate of nitrogen species uptake Investigating Sulfuric Acid Systems Nucleation Theory Homogeneous and Heterogeneous particle growth Ion-induced and ion-mediated nucleation theory Charge-dipole interactions

H 2 SO 4 b 2.725(15) D H 2 SO 4 -H 2 O a 3.052(17) D a)Brauer, C. S.; Sedo, G.; Leopold, K. R. Geophys. Res. Lett. 33 (2006) L23805, doi: /2006GL b)Kuczkowski, R. L.; Suenram, R. D.; Lovas, F. J. Journal of the American Chemical Society 1981, 103, Previous Dipole Moment Work

H 2 SO 4 b 2.725(15) D D H 2 SO 4 -H 2 O a 3.052(17) D D a)Brauer, C. S.; Sedo, G.; Leopold, K. R. Geophys. Res. Lett. 33 (2006) L23805, doi: /2006GL b)Kuczkowski, R. L.; Suenram, R. D.; Lovas, F. J. Journal of the American Chemical Society 1981, 103, c)Al Natsheh, A; Nadykto, A. B.; Mikkelsen, K. V.; Yu, F.; Ruuskanen, J. J. Phys. Chem. A 2004, 108, Previous Dipole Moment Work PW91PW91/TZP c D (29.7 %) D (-3.4 %)

H 2 SO 4 b 2.725(15) D D D H 2 SO 4 -H 2 O a 3.052(17) D D D a)Brauer, C. S.; Sedo, G.; Leopold, K. R. Geophys. Res. Lett. 33 (2006) L23805, doi: /2006GL b)Kuczkowski, R. L.; Suenram, R. D.; Lovas, F. J. Journal of the American Chemical Society 1981, 103, c)Al Natsheh, A; Nadykto, A. B.; Mikkelsen, K. V.; Yu, F.; Ruuskanen, J. J. Phys. Chem. A 2004, 108, Previous Dipole Moment Work PW91PW91/TZP c D (29.7 %) D (-3.4 %) D (2.9 %) D (-25.4 %) MP2/aug-cc-pVQZ a

MirrorMirror Antenna Argon passed over a sample of polymerized SO 3 Backing Pressure 25 psig Microwave Electronics Computer Spectrum Fabry-Perot Cavity Diffusion Pump Pulsed Nozzle MirrorMirror The Pulsed Nozzle FTMW Spectrometer

MirrorMirror Antenna Argon passed over a sample of polymerized SO 3 Backing Pressure 25 psig Microwave Electronics Computer Spectrum Fabry-Perot Cavity Diffusion Pump Pulsed Nozzle MirrorMirror The Pulsed Nozzle FTMW Spectrometer Series 9 Pulsed Solenoid Valve Needle Adaptor Stainless Steal Needle Dimensions ID = 0.016"Length = 0.205" Argon bubbled through H 2 O at a rate of 10 sccm.

Diffusion Pump Fabry-Perot Cavity The Pulsed Nozzle FTMW Spectrometer MirrorMirror Fabry-Perot Cavity Diffusion Pump MirrorMirror

Fabry-Perot Cavity The Pulsed Nozzle FTMW Spectrometer 1.A potential of up to 10,000 V (5,000 V/plate) 2.Calibrated the plate spacing before and after collecting data using the Ar-SO 3 complex [  = (3) D] Checked the calibration method using OCS  lit = (2) D  obs = (16) D

Zero Field and 37 Stark-shifted Frequencies The  M = 0 Stark Component of the 1 10 ← 0 00 Transition Frequency [MHz]  = 0 V/cm  = 76.5 V/cm  max = MHz  max = V/cm

Zero Field and 54 Stark-shifted Frequencies  max = MHz  max = V/cm  = 0 V/cm  = 76.5 V/cm Frequency [MHz] The  M| = 1 Stark Component of the 1 10 ← 0 00 Transition

a)Kuczkowski, R. L.; Suenram, R. D.; Lovas, F. J. “Microwave Spectrum, Structure, and Dipole Moment of Sulfuric Acid.” Journal of the American Chemical Society 1981, 103, Sulfuric Acid Molecular Constants a

a)Kuczkowski, R. L.; Suenram, R. D.; Lovas, F. J. “Microwave Spectrum, Structure, and Dipole Moment of Sulfuric Acid.” Journal of the American Chemical Society 1981, 103, Sulfuric Acid Transition Frequencies a

H = H rot + H Q + H  H  = -    c =  tot = (67) D H = H rot + H Q + H  H  = -   1 10 ← 0 00  c =  tot = (67) D 6 43 ← 5 33  c =  tot = 2.725(15) D  = (a c + b c M 2 )  2  c 2 a c = x b c = x ← 5 33  c =  tot = 2.725(15) D

6 43 ← 5 33 Stark Coefficients y = E-05x – E-04 R 2 = y = 2.112E-07x – 5.694E-05 R 2 = ← 5 33  c =  tot = 2.725(15) D  a c = x b c = x ← 0 00  c =  tot = (67) D  a c = x b c = x 10 -6

Error Analysis Three Primary Sources of Experimental Error 1.Least Squares Analysis  ls = D  ls = D

Three Primary Sources of Experimental Error 1.Least Squares Analysis  ls = D  ls = D 2.Plate Spacingd plate = cm  plate = cm Error Analysis

Three Primary Sources of Experimental Error 1.Least Squares Analysis  ls = D  ls = D 2.Plate Spacingd plate = cm  plate = cm 3.Calibration Standard  Ar-SO3 = D  Ar-SO3 = D

This Work2.9643(67) D Kuczkowski, Suenram, & Lovas2.725(15) D D Comparison of the Experimental and Theoretical Dipole Moments PW91PW91/aug-cc-pV(Q+d)Z D MP2/aug-cc-pV(Q+d)Z D

Comparison of the Experimental and Theoretical Dipole Moments This Work2.9643(67) D PW91PW91/aug-cc-pV(Q+d)Z D MP2/aug-cc-pV(Q+d)Z D Brauer et al.3.052(17) D PW91PW91/aug-cc-pVQZ2.407 D MP2/aug-cc-pVQZ * D H 2 SO 4 H 2 SO 4 -H 2 O * Single-point calculation done at the aug-cc-pVTZ geometry, taken from Brauer et al.

Conclusions 1.The dipole moment of the sulfuric acid monomer has been refined using Fourier transform microwave spectroscopy. 91 Stark-shifted frequencies were collect for the 1 10 ← 0 00 rotational transition. The newly measured value, (67) D, represents an increase of approximately 0.24 D over the previously published value. 2.The dipole moments of the sulfuric acid monomer and mono-hydrate were calculated using both ab initio and Density Functional Theory. The calculated dipole moments show convergence with increasing basis set size. The agreement between the measured experimental values and those of theory various drastically with the method employed.

Dr. Kenneth Leopold Jane Curtis Dr. Carolyn Brauer Acknowledgements Funding National Science Foundation (NSF) Petroleum Research Fund (PRF) Minnesota Supercomputing Institute (MSI)