Trapped Atomic Ions II Scaling the Ion Trap Quantum Computer Christopher Monroe FOCUS Center & Department of Physics University of Michigan.

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation.
Advertisements

Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M.
Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
Superconducting qubits
Quantum Computer Implementations
Rotating Wall/ Centrifugal Separation John Bollinger, NIST-Boulder Outline ● Penning-Malmberg trap – radial confinement due to angular momentum ● Methods.
大阪大学 大学院基礎工学研究科 占部研究室 田中 歌子
Ion-trap quantum computation Summer School of CQIQC 2012 Laser Lab Prof. Vasant Natarajan Department of Physics Indian Institute of Science Bangalore May.
Quantum computing hardware.
Optical Tweezers F scatt F grad 1. Velocity autocorrelation function from the Langevin model kinetic property property of equilibrium fluctuations For.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Generation of short pulses
Electrons on Liquid Helium
Quantum Computing with Trapped Ion Hyperfine Qubits.
~ 12  m Neutral atom quantum computing in optical lattices: far red or far blue? C. S. Adams University of Durham 17 November 2004 University of Durham.
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Simple quantum algorithms with an electron in a Penning Trap David Vitali, Giacomo Ciaramicoli, Irene Marzoli, and Paolo Tombesi Dip. di Matematica e.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
An Error Model for Quantum Circuits Using Ion Traps Manoj Rajagopalan.
Quantum Information Processing with Trapped Ions E. Knill C. Langer D. Leibfried R. Reichle S. Seidelin T. Schaetz D. J. Wineland NIST-Boulder Ion QC group.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Image courtesy of Keith Schwab.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576.
Image courtesy of Keith Schwab.

Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
18 56 Quantum Information Science: A Second Quantum Revolution Christopher Monroe Joint Quantum Institute University of Maryland Department.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
S. Stahl: Cryogenic Electronics in Ion Traps Part I S. Stahl, CEO Stahl-Electronics Cryogenic Electronics in Ion Traps.
Point Paul trap: Fiber integration and height variation
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Four equations (integral form) : Gauss’s law Gauss’s law for magnetism Faraday’s law Ampere-Maxwell law + Lorentz force Maxwell’s Equations.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
DEPARTMENT OF PHYSICS UNIVERSITY OF TORONTO, 60 ST. GEORGE STREET, TORONTO, ONTARIO, CANADA M5S 1A7 1/22 Whither Quantum Computing? 2007 CQCT ANNUAL WORKSHOP.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Quantum Computing with Trapped Atomic Ions
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Distributing entanglement in a multi-zone ion-trap * Division 891 T. Schätz D. Leibfried J. Chiaverini M. D. Barrett B. Blakestad J. Britton W. Itano J.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Computation With Trapped Ions Brian Fields.
Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
Fiber-coupled Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms, Massachusetts.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Fiber-integrated Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms,
The Heavy Ion Fusion Virtual National Laboratory Erik P. Gilson** PPPL 15 th International Symposium on Heavy Ion Fusion June 9 th, 2004 Research supported.
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Circuit QED Experiment
Ion Trap Quantum Computing and Teleportation
Introduction to Optoelectronics Optical communication (3) Optical components Prof. Katsuaki Sato.
University of Oxford, U.K.*
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Cavity QED
10.6 Fourier Transform Mass Spectrometry
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Fiber-coupled Point Paul Trap
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Trapped Atomic Ions II Scaling the Ion Trap Quantum Computer Christopher Monroe FOCUS Center & Department of Physics University of Michigan

Universal Quantum Logic Gates with Trapped Ions Step 1 Laser cool collective motion to rest Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995) n=0

Universal Quantum Logic Gates with Trapped Ions laser j k Step 2 Map j th qubit to collective motion Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Universal Quantum Logic Gates with Trapped Ions laser j k Step 3 Flip k th qubit depending upon motion Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Universal Quantum Logic Gates with Trapped Ions laser j k Step 4 Remap collective motion to j th qubit (reverse of Step 1) Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995) Net result: [| j + | j ] | k  | j | k + | j | k n=0

Four-qubit quantum logic gate Sackett, et al., Nature 404, 256 (2000) |   |  + e i  | 

 =  m +  m During the gate (at some point), the state of an ion qubit and motional bus state is: Decoherence Kills the Cat

Anomalous heating in ion traps Q. Turchette, et. al., Phys. Rev. A 61, (2000) L. Deslauriers et al., Phys. Rev. A 70, (2004) Heating due to fluctuating patch potentials (?) ~ 1/d 4 d

S E (  )  (V/m) 2 /Hz 40 Ca Hg Cd Ba + 9 Be + 1/d 4 guide-to-eye Electric Field Noise History in 3-6 MHz traps est. thermal noise Distance to nearest trap electrode [mm] Q. Turchette, et. al., Phys. Rev. A 61, (2000) L. Deslauriers et al., Phys. Rev. A 70, (2004) 137 Ba + IBM-Almaden (2002) 40 Ca + Innsbruck (1999) 199 Hg + NIST (1989) 9 Be + NIST (1995-) 111 Cd + Michigan (2003)

0.3 mm J. Bergquist, NIST ion loading? ion lifetime?

Photoionization-loading of Cd + into trap Cd + loading rate (sec -1 ) laser center wavelength (nm) Cd 1 S 0  1 P 1 transition (a)Off-resonant 266nm 10Hz nsec YAG (b) Resonant 229nm 80 MHz psec Ti:Saph (P avg 1 mW) laser bandwidth 1S01S0 1P11P1 continuum 229nm Neutral Cd

+ E(r) ? Ion Trap Tricks to “get around”  E  : (1)Apply magnetic field along z; ev  B Lorentz force confines in xy plane PENNING TRAP  large capacity ( )  ions rotate around z  confinement limited by eB/mc + E(r) NO!  E  quadrupole: E(r) =  (x + y  2z) z

~few 1000 Be + ions in a Penning Trap J. Bollinger, NIST Quantum Hard-drive?

+ E(r) ? Ion Trap Tricks to “get around”  E  : (1)Apply magnetic field along z; ev  B Lorentz force confines in xy plane PENNING TRAP  large capacity ( )  ions rotate around z  confinement limited by eB/mc + E(r) NO!  E  quadrupole: E(r) =  (x + y  2z) z W. Paul H. Dehmelt (2) Apply sinusoidal electric quadrupole field RF (PAUL) TRAP  ions stationery (on average)  strong confinement sin  t

x + [  2 cos  t]x = 0  Dynamics of a single ion in a rf trap time position x “secular” motion at frequency  trap    “micromotion” at frequency  Mathieu Equation: x(t) bounded for  <<   2 = eV 0 /md 2

V ac 3D ion trap geometry ring endcap d rf dc 0.3 mm ions

Desirable properties for quantum computing: simple crystal structure - anisotropic linear rf trap tight confinement (high  trap ) - high rf voltage - small electrodes vs

Linear RF Ion Trap rf gnd rf gnd V 0 cos  t transverse confinement: 2D rf ponderomotive potential

Linear RF Ion Trap axial confinement: static “endcaps” +U

dc rf dc rf dc rf dc rf dc 3-layer geometry: allows 3D offset compensation scalable to larger structures

dc rf dc rf dc

Cd +

Scale up? frequency  com axial mode spectrum  3  com

Fluorescence (arb) Raman Detuning  R (MHz) a b c d a b c d 2a c-a b-a 2b,a+c b+c a+b 2a c-a b-a 2b,a+c b+c a+b carrier 4-ion axial mode spectrum center-of-mass (a) sym. breathing (b) mode (c) mode (d) NIST-1999

multiplexed trap architecture interconnected multi-zone structure  subtraps decoupled move ions with electrode potentials qubit ions sympathetically cooled  only a few normal modes to cool  weak cooling in memory zone individual optical addressing during gates not required  gates in tight trap  fast readout for error correction in (shielded) subtrap  no decoherence from fluorescence D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

Sympathetic Cooling 24 Mg +9 Be + Cooling Light Cooling with same species Innsbruck group: Rohde, et al., J. Opt. B 3, S34 (2001) 40 Ca + Cooling with different isotopes Michigan group: Blinov, et al., PRA 65, (2002) 114 Cd +112 Cd + Cooling with different ion species NIST, Barrett et al. PRA 68, (2003) Approaches:

2  m 114 Cd Cd +

114 laser beam on

112 laser beam on

100  m (6-zone) alumina/gold trap (D. Wineland, et. al., NIST-Boulder) 200  m separation zone rf dc view along axis:

1 mm “Tee” junction (Michigan)

50 m

Microfabrication of Integral Trap structures (no assembly required) High aspect ratio Planar

Si doped GaAs AlGaAs Ge:Au ~10 mm GaAs Ion Trap Fabrication ~10 mm 100  m (Michigan)

Si doped GaAs AlGaAs Ge:Au ~10 mm 100  m GaAs Ion Trap Fabrication (Michigan)

Si doped GaAs AlGaAs Ge:Au ~10 mm 100  m GaAs Ion Trap Fabrication (Michigan)

Dan Stick Martin Madsen Winfried Hensinger Keith Schwab (LPS/UMd)

6m6m

Progress… 2 m AlGaAs insulating gap: maximum voltage ~5V unable to load 4 m AlGaAs insulating gap: maximum voltage ~50 V (!) currently processing Other concerns… cantilever mechanical resonances  100 kHz RF dissipation P diss  V 0 2 C(R s C + tan) R s = series resistance C= electrode capacitance = rf drive frequency tan= loss tangent of insulating gap expect mW of dissipation for 50V trap operation e Q=CV RsRs C

Using a pho t on as the data bus: Entangling atoms and photons cavity-QED ENS-Paris CalTech MPQ-Garching … no direct measurement of entanglement: not enough control of either atom or photon

optical fiber trapped ions trapped ions Linking ideal quantum memory (trapped ion) with ideal quantum communication channel (photon)

1,1 1,0 1,-1 0,0 2 S 1/2 2 P 3/2 F’=2 F’=1  2  (50 MHz)  10 8 /sec Probabalistic entanglement between a single atom and single photon   

1,1 1,0 1,-1 0,0    (m=0)   (m=1) quant axis Given photon is emitted along quantization-axis: | = ||   + ||   (postselected)

PBS D1 D2 trapped ion collection lens polarization rotator |H  |V  excitation beam Schematic of Experiment microwaves measurement beam 1 m

Measured Correlations atom qubit photon qubit P(|H) = 97% P(|H) = 3% P(|V) = 6% P(|V) = 94%

Repeat, but rotate both qubits by =  /2 (relative phase ) before measurement. if initially in pure state |  = |  |V  + |  |H  then R|  = ( |  |V  + |  |H  ) cos(  + ( |  |H  + |  |V  ) sin(  correlation zero correlation |  |V  (p=50%) |  |H  (p=50%) |  |V  + |  |H  (p=50%) |  |H  + |  |V  (p=50%) if initially in mixed state |  = then R|  =

Rotating each qubit By /2 before measurement: | | /2 /2 H V correlations in rotated basis P(|H) = 89% P(|H) = 11% P(|V) = 6% P(|V) = 94%

First direct observation of entanglement between a single atom and single photon. B. B. Blinov, et. al., Nature 428, 153 (2004) Entanglement Fidelity F=  ideal || ideal  > 87% Also: Bell Ineq. violation – D. Moehring et al., Phys. Rev. Lett. 93, (2004)

Can use this technique to seed remote ion-ion entanglement… Ann Arbor Columbus      V             V        1 2 D D coincidence photon detection upon coincidence photon detection        

Can use this technique to seed remote ion-ion entanglement… … and form the basis for scalable QC L.-M. Duan, et. al., Quantum Inf. Comp., 4, 165 (2004) quant-ph/      V             V        1 2 D D coincidence photon detection upon coincidence photon detection         Ann Arbor Columbus

D D D D D D quantum repeater; distributed quantum computer

two ions in separate traps imaged on the same camera

Quantum Computer Physical Implementations 1. Individual atoms and photons a. ion traps b. atoms in optical lattices c. cavity-QED 2. Superconductors a. Cooper-pair boxes (charge qubits) b. rf-SQUIDS (flux qubits) 3. Semiconductors a. quantum dots b. phosphorus in silicon 4. Other condensed-matter a. electrons floating on liquid helium b. single phosphorus atoms in silicon scales works