SEP.20-21.2006.KIASKIAS WORKSHOP1 Dark Energy Effects on CMB & LSS The 2 nd KIAS Workshop on Cosmology and Structure Formation Seokcheon ( 碩天 large sky)

Slides:



Advertisements
Similar presentations
Observing Dark Energy SDSS, DES, WFMOS teams. Understanding Dark Energy No compelling theory, must be observational driven We can make progress on questions:
Advertisements

Cosmological Constraints from Baryonic Acoustic Oscillations
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
P ROBING SIGNATURES OF MODIFIED GRAVITY MODELS OF DARK ENERGY Shinji Tsujikawa (Tokyo University of Science)
What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
Optimization of large-scale surveys to probe the DE David Parkinson University of Sussex Prospects and Principles for Probing the Problematic Propulsion.
CMB: Sound Waves in the Early Universe Before recombination: Universe is ionized. Photons provide enormous pressure and restoring force. Photon-baryon.
SDSS-II SN survey: Constraining Dark Energy with intermediate- redshift probes Hubert Lampeitl University Portsmouth, ICG In collaboration with: H.J. Seo,
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Nikolaos Nikoloudakis Friday lunch talk 12/6/09 Supported by a Marie Curie Early Stage Training Fellowship.
Physical Constraints on Gauss-Bonnet Dark Energy Cosmologies Ishwaree Neupane University of Canterbury, NZ University of Canterbury, NZ DARK 2007, Sydney.
PRE-SUSY Karlsruhe July 2007 Rocky Kolb The University of Chicago Cosmology 101 Rocky I : The Universe Observed Rocky II :Dark Matter Rocky III :Dark Energy.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
CMB as a physics laboratory
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
COSMO 2006, Lake Tahoe 9/28/2006 Cuscuton Cosmology: Cuscuton Cosmology: Dark Energy meets Modified Gravity Niayesh Afshordi Institute for Theory and Computation.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
Dark Energy Task Force: Findings and Recommendations Dark Energy Task Force: Findings and Recommendations From Quantum to Cosmos Robert Cahn May 23, 2006.
1 What is the Dark Energy? David Spergel Princeton University.
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Dark Energy The first Surprise in the era of precision cosmology?
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Observational test of modified gravity models with future imaging surveys Kazuhiro Yamamoto (Hiroshima U.) Edinburgh Oct K.Y. , Bassett, Nichol,
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
Yun Wang, 3/2011 Baryon Acoustic Oscillations and DE Figure of Merit Yun Wang Yun Wang WFIRST SDT #2, March 2011 WFIRST SDT #2, March 2011 BAO as a robust.
DARK ENERGY RICHARD BATTYE JODRELL BANK OBSERVATORY SCHOOL OF PHYSICS AND ASTRONOMY UNIVERSITY OF MANCHESTER PHENOMENOLOGY & PRESENT/FUTURE OBSERVATIONS.
Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD 报告人: 段效贤 中国科学院国家天文台 2012 年两岸粒子物理与宇宙学研讨会.
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
A. Ealet, S. Escoffier, D. Fouchez, F. Henry-Couannier, S. Kermiche, C. Tao, A. Tilquin September 2012.
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
 Acceleration of Universe  Background level  Evolution of expansion: H(a), w(a)  degeneracy: DE & MG  Perturbation level  Evolution of inhomogeneity:
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
LSST and Dark Energy Dark Energy - STScI May 7, 2008 Tony Tyson, UC Davis Outline: 1.LSST Project 2.Dark Energy Measurements 3.Controlling Systematic Errors.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
Will Percival The University of Portsmouth
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Complementary Probes of Dark Energy Josh Frieman Snowmass 2001.
Jochen Weller XLI Recontres de Moriond March, 18-25, 2006 Constraining Inverse Curvature Gravity with Supernovae O. Mena, J. Santiago and JW PRL, 96, ,
Gravitational Lensing
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Cheng Zhao Supervisor: Charling Tao
MEASUREING BIAS FROM UNBIASED OBSERVABLE SEOKCHEON LEE (KIAS) The 50 th Workshop on Gravitation and Numerical INJE Univ.
Jochen Weller Decrypting the Universe Edinburgh, October, 2007 未来 の 暗 黒 エネルギー 実 験 の 相補性.
@ 2012 Miniworkshop for String theory and Cosmology Dec. 01st Seokcheon Lee (KIAS)
TR33 in the Light of the US- Dark Energy Task Force Report Thomas Reiprich Danny Hudson Oxana Nenestyan Holger Israel Emmy Noether Research Group Argelander-Institut.
Cosmology Scale factor Cosmology à la Newton Cosmology à la Einstein
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
The influence of Dark Energy on the Large Scale Structure Formation
Princeton University & APC
Probing the Coupling between Dark Components of the Universe
Recent status of dark energy and beyond
Complementarity of Dark Energy Probes
Detection of integrated Sachs-Wolfe effect by cross-correlation of the
6-band Survey: ugrizy 320–1050 nm
Cosmology with Galaxy Correlations from Photometric Redshift Surveys
Constraining Dark Energy with the Large Synoptic Survey Telescope
Presentation transcript:

SEP KIASKIAS WORKSHOP1 Dark Energy Effects on CMB & LSS The 2 nd KIAS Workshop on Cosmology and Structure Formation Seokcheon ( 碩天 large sky) Lee Institute of Physics, Academia Sinica

SEP KIASKIAS WORKSHOP2 Outline  Observable Impact of DE  BAO, CL, SN, WL  (Im)Perfect Dark Energy Fluid  Effects on CMB and Matter Power Spectrum  Summary

SEP KIASKIAS WORKSHOP3 Observable Impact of DE  Modification of z–d relation : Baryon Acoustic Oscillations (BAO, R.Kron), SuperNova (SN, G-C Liu), [δD]  Effects on growth of structures : Galaxy CLustering counting (CL, Z.Zheng), Weak Lensing (WL, Sejong Univ), ISW effect (C.G.Park)

SEP KIASKIAS WORKSHOP4 Observations & Measurements

SEP KIASKIAS WORKSHOP5 H(z) & δ (z)  Evolution of Background  From WMAP data we can find z eq ~ 5000  Flat Universe is preferred by WMAP. i.e. Ω k = 0  Density fluctuation on small scales (sub-horizon scale)

SEP KIASKIAS WORKSHOP6 r(z) and dV(z)  FRW metric  Volume element  Proper distance  Comoving coordinate

SEP KIASKIAS WORKSHOP7 Imperfect DE Fluid  Cosmological fluid  Adiabatic and entropic sound speed (J-C Hwang)  Dark energy rest frame  Anisotropic stress of DE

SEP KIASKIAS WORKSHOP8 Effects of σ on δ & θ  For large scale source term : -(1+ω)(c_s^2-ω)θ/k^2  ω = -0.8  Dominate metric source term and derive δ to smaller values  k = 1.3 · 10^{-4} Mpc^{-1}  (c_s^2, c_vis^2) = (0,0), (0.6,0),(0,0.6),(0.6,0.6)  δ gets smaller when DE dominate (solid lines)  Θ increases (dashed lines)  ISW id enhanced as c^2 increases

SEP KIASKIAS WORKSHOP9 ISW Effects  C_{vis}^2 : 1.0, 0.1, 0.01, 0.001, 0  MD : total density grows in order to Φ,Ψ = const.

SEP KIASKIAS WORKSHOP10 Matter Power Spectrum  C_{vis}^2 = 1.0  Solid line : w=-1.2, c_s^2=1.0 Dash-dotted : w=-0.8,c_s^2=0 Dashed : w=-1.2 c_s^2=0 Thick : w=-0.8, c_s^2=1.0

SEP KIASKIAS WORKSHOP11 Standard Cosmology  Friedman equations  Critical density and density contrasts  Curvature  Hubble’s law

SEP KIASKIAS WORKSHOP12 DE vs MG    Quintessence  (Generalised) Chaplygin gas  Tachyon  Mass Varying Neutrino  Modification Of Newtonian Dynamics (MOND)  Cardassian Models  Phantom  f(R) Gravity accelerating universe.

SEP KIASKIAS WORKSHOP13 Developments of DE program  Stage I : Current Known  Stage II : Anticipation for ongoing projects  Stage III : Comprising currently proposed projects  Stage IV : Comprising Large Survey Telescope (LST) and/or Square Kilometer Array (SKA) and/or Joint Dark Energy Mission (JDEM)

SEP KIASKIAS WORKSHOP14 Quantifying Progress I  Figure of Merit (FoM) : goodness of a single experiment or a combination of experiments on probing DE.  Choose DE parameterization :  DETF FoM : Reciprocal of Area of the error ellipse in w0-w1 plane that enclose 95% C.L contour.

SEP KIASKIAS WORKSHOP15 Quantifying Progress II (From DETF Report)

SEP KIASKIAS WORKSHOP16 BAO  s ~ 150 Mpc : sound horizon at LS  Angular size of BAO, Perpendicular to l.o.s  Radial suppression + photo z : exponential suppression  Spectroscopic survey : H(z)  Eisenstein et.al (05) SDSS LRG correlation function. Observer H =  z/s D A = s / 

SEP KIASKIAS WORKSHOP17 BAO II  s : sound horizon  Acoustic scale depends o n (  mh2)-0.25  Hu. Sugiyama (96)  (A) Least affected by systematic errors  (A) High z  (D) Least statistical power  Large Synoptic Survey Telescope (UC Davis)

SEP KIASKIAS WORKSHOP18 CL  Galaxy cluster counting 20,000 clusters to z=1with M > 2 X E14Ms  Spatial clustering of galaxies 300 million galaxies  Compare Observed distribution of clusters to N-body simulations  Mass function shape

SEP KIASKIAS WORKSHOP19 CL II  differential number of clusters  Differential comoving number density, Jenkins (01), assumption : GC = DM halos  Two point correlation funtion  (A) H(z),  z)  (D) uncertaintities

SEP KIASKIAS WORKSHOP20 SN  SNAP (SuperNova Acceleration Probe) ~ 2000 SNeIa : 0.1 < z <1.7  CSP (Carnegie Supernova Project) : z < 0.1  SDSS II : 0.1 < z < 0.2  SNLS : 0.8 < z < 1.0  ESSENCE : 0.2 < z < 0.8  (A) most established method  (D) evolution of SNe

SEP KIASKIAS WORKSHOP21 WL (From T.Tyson)

SEP KIASKIAS WORKSHOP22 WL II  Planck + 3D WL : 10,000 sq deg to median z = 0.7 (A.Heavens 03)  3D WL accuracy on w 1~3 %  DUNE : 20,000 sq. deg. to z = 0.9 (35 gal/arcmin2) (A. Refreiger)  SNAP : 1,000 sq. deg to z = 1.23 (100 gal/arcmin2)  (A) : greatest potential to constrain w  (D) : limited by systematic errors coming from errors of photo-z (except SKA)

SEP KIASKIAS WORKSHOP23 Surveys

SEP KIASKIAS WORKSHOP24 Generalized Gravity Theories I  A broad class of alternative gravity theories (From T.Koivisto)   matter fields  Φ : a scalar field

SEP KIASKIAS WORKSHOP25 Generalized Gravity Theories II

SEP KIASKIAS WORKSHOP26 Generalized Gravity Theories III

SEP KIASKIAS WORKSHOP27 Quintessence Potentials  SL(06)

SEP KIASKIAS WORKSHOP28 Quartessence (Unification of DM & DE)

SEP KIASKIAS WORKSHOP29 Quartessence II

SEP KIASKIAS WORKSHOP30 Summary  As c_{vis}^ 2 ↑, δ↓, θ↑, H/k^2(1+ω)θ↑  As c_{vis}^ 2 ↑, ISW ↑  Effects on MPS occurs only at large scales  CMB’s only sensitive to  Correlation to others BAO, CL, D(g), WL…  Bispectra (? Y. Suto)  DARK ENERGY IS NOWHERE!