Cascading gravity and de gravitation Claudia de Rham Perimeter Institute/McMaster Miami 2008 Dec, 18 th 2008.

Slides:



Advertisements
Similar presentations
Claudia de Rham May 9 th Massive Gravity The notion of mass requires a reference ! Flat Metric Metric.
Advertisements

Claudia de Rham July 30 th with S. Renaux-Petel YITP International Molecule-type Workshop "Nonlinear massive gravity theory and its observational.
Theories of gravity in 5D brane-world scenarios
Benasque 2012 Luca Amendola University of Heidelberg in collaboration with Martin Kunz, Mariele Motta, Ippocratis Saltas, Ignacy Sawicki Horndeski Lagrangian:
Extra Dimensions of Space-Time String theory suffers conformal anomaly that makes theory inconsistent --> get rid of it Conformal anomaly ~ (D-26) for.
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
Massive Gravity and the Galileon Claudia de Rham Université de Genève Work with Gregory Gabadadze, Lavinia Heisenberg, David Pirtskhalava and Andrew Tolley.
BRANE SOLUTIONS AND RG FLOW UNIVERSIDADE FEDERAL DE CAMPINA GRANDE September 2006 FRANCISCO A. BRITO.
P ROBING SIGNATURES OF MODIFIED GRAVITY MODELS OF DARK ENERGY Shinji Tsujikawa (Tokyo University of Science)
Hawking-Moss instantons in non- linear Massive Gravity Ying-li Zhang (D3) YITP, Kyoto University Lunch Meeting 3 October 2012 Cooperator: Ryo Saito, Misao.
Claudia de Rham July 5 th 2012 Work in collaboration with Work in collaboration with Sébastien Renaux-Petel
University of Texas at San Antonio Arthur Lue Dark Energy or Modified Gravity?
Cosimo Stornaiolo INFN-Sezione di Napoli MG 12 Paris July 2009.
Physical Constraints on Gauss-Bonnet Dark Energy Cosmologies Ishwaree Neupane University of Canterbury, NZ University of Canterbury, NZ DARK 2007, Sydney.
Chiral freedom and the scale of weak interactions.
DGP gravity Theory and Phenomenology
Coupled Dark Energy and Dark Matter from dilatation symmetry.
Near-Horizon Solution to DGP Perturbations Ignacy Sawicki, Yong-Seon Song, Wayne Hu University of Chicago astro-ph/ astro-ph/
The 2d gravity coupled to a dilaton field with the action This action ( CGHS ) arises in a low-energy asymptotic of string theory models and in certain.
Gravity and Extra Dimensions José Santiago Theory Group (Fermilab) APS April meeting, Session Y4 (Gravity and Cosmology) Jacksonville (FL) April 14-17,
Infra-red Quantum Effects in de Sitter Space Yoshihisa Kitazawa KEK Theory Center and Sokendai H. Kitamoto and Y.K. arXiv:1012:5930.
Self – accelerating universe from nonlinear massive gravity Chunshan Lin Kavli
Chaplygin gas in decelerating DGP gravity Matts Roos University of Helsinki Department of Physics and and Department of Astronomy 43rd Rencontres de Moriond,
Gravitational Waves (& Gravitons ?)
Large distance modification of gravity and dark energy
Modified (dark) gravity Roy Maartens, Portsmouth or Dark Gravity?
曲がる余剰次元と宇宙項 - braneworld cosmology - YITP, Kyoto U Misao Sasaki.
BRANEWORLD COSMOLOGICAL PERTURBATIONS
Gravity in brane world Takahiro Tanaka (Kyoto univ.)
Colliding Hadrons as Cosmic Membranes and Possible Signatures of Lost Momentum I.Ya.Aref’eva Steklov Mathematical Institute, Moscow A topical conference.
Fading Gravity and Self-Inflation Justin Khoury Justin Khoury (Perimeter Institute) hep-th/0610???
Yugo Abe (Shinshu University) July 10, 2015 In collaboration with T. Inami (NTU), Y. Kawamura (Shinshu U), Y. Koyama (NCTS) YA, T. Inami,
P-adic Strings: Thermal Duality & the Cosmological Constant Tirthabir Biswas Loyola University, New Orleans PRL 104, (2010) JHEP 1010:048, (2010)
Quantum Effects From Boundaries in de Sitter and anti-de Sitter spaces Aram Saharian Department of Physics, Yerevan State University, Armenia _________________________________________.
Claudia de Rham Dec. 18 th Why Modify Gravity in the IR ? Late time acceleration & CC problem First signs of the breakdown of GR on cosmological.
Giuseppe De Risi M. Cavaglià, G.D., M. Gasperini, Phys. Lett. B 610:9-17, hep-th/ QG05, Sept
The effective theory of cod-two branes Claudia de Rham McMaster/PI COSMO, 21 st August 2007 arXiv:
Quantum Gravity and emergent metric Quantum Gravity and emergent metric.
Quantum Gravity at a Lifshitz Point Ref. P. Horava, arXiv: [hep-th] ( c.f. arXiv: [hep-th] ) June 8 th Journal Club Presented.
Black holes sourced by a massless scalar KSM2105, FRANKFURT July, 21th 2015 M. Cadoni, University of Cagliari We construct asymptotically flat black hole.
Large extra dimensions and CAST Biljana Lakić Rudjer Bošković Institute, Zagreb Joint ILIAS-CAST-CERN Axion Training, , CERN Joint ILIAS-CAST-CERN.
Infrared divergences in the inflationary brane world Oriol Pujolàs Yukawa Institute for Theoretical Physics, Kyoto University In collaboration with Takahiro.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 9.
Theoretical Aspects of Dark Energy Models Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences CCAST, July 4, 2005.
Modified Gravity and Degravitation
GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT
On String Theory Duals of Lifshitz-like Fixed Point Tatsuo Azeyanagi (Kyoto University) Based on work arXiv: (to appear in JHEP) with Wei Li (IPMU)
1 Loop corrections to the primordial perturbations Yuko Urakawa (Waseda university) Kei-ichi Maeda (Waseda university)
Cosmology in Eddington- inspired Born-Infeld gravity Hyeong-Chan Kim Korea National University of Transportation 19 Feb 2013 The Ocean Suites Jeju, Asia.
Kaluza-Klein Braneworld Cosmology S Kanno, D Langlois, MS & J Soda, PTP118 (2007) 701 [arXiv: ] Misao Sasaki YITP, Kyoto University.
A Holographic Framework for Eternal Inflation Yasuhiro Sekino (Okayama Institute for Quantum Physics) Collaboration with Ben Freivogel (UC Berkeley), Leonard.
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
Galileons in Cosmology Claudia de Rham Université de Genève Work with Clare Burrage, Gregory Gabadadze, Lavinia Heisenberg, David Pirtskhalava, David Seery.
Modified gravity: Brief summary
New Insights into Quantum Gravity from Holography Gary Horowitz UC Santa Barbara with N. Engelhardt ( , and in progress)
Dept.of Physics & Astrophysics
Cosmology in a brane-induced gravity model with trace-anomaly terms
FAILURES OF HOMOGENEOUS & ISOTROPIC COSMOLOGIES IN EXTENDED QUASI-DILATON MASSIVE GRAVITY (arXiv: ) Saurabh Kumar, Department of Physics, Case.
Quantum Mechanical Models for Near Extremal Black Holes
Unitarity constraints on h/s
Joe Kapusta* University of Minnesota
INDUCED COSMOLOGY ON A CODIMENSION-2 BRANE IN A CONICAL BULK
Long distance modifications of gravity in four dimensions.
The Cosmological Constant Problem & Self-tuning Mechanism
Stealth Acceleration and Modified Gravity
Non Singular Origin of the Universe and its Present Va-cuum Energy Density, IJMPA & Honorable Mention in Gravity Research Foundation Competition for 2011,
The case for emergent gravity
Massive Gravity and the Galileon
Spin-2 ghost in brane gravity
ブレイン宇宙における重力波の伝播 石原 秀樹 大阪市立大学 共同研究者 田中 泉 2019/4/28.
Presentation transcript:

Cascading gravity and de gravitation Claudia de Rham Perimeter Institute/McMaster Miami 2008 Dec, 18 th 2008

Based on work on collaboration with “Cascading Gravity and Degravitation”, JCAP02(2008)011 “Cascading DGP”, PRL 100 (251603), 2008 “Tensing the ghost in 6D cascading gravity”, to appear “Towards Cosmology in theories of massive gravity”, to appear Stefan Hofmann, Nordita, Stockholm Justin Khoury, Perimeter, Waterloo Andrew Tolley, Perimeter, Waterloo Oriol Pujolas, CERN Gia Dvali, NYU, New York &CERN Michele Redi, EPFL, Lausanne

The c.c. problem The current acceleration of the Universe is well described by a c.c.,  /M pl 2, with  (10 -2 eV) 4 while m e 4 /  ~ and M pl 4 /  ~ The current acceleration of the Universe is well described by a c.c.,  /M pl 2, with  (10 -2 eV) 4 while m e 4 /  ~ and M pl 4 /  ~ Why is the vacuum energy so small when quantum effects lead to much bigger corrections? Why is the vacuum energy so small when quantum effects lead to much bigger corrections?

The c.c. problem The current acceleration of the Universe is well described by a c.c.,  /M pl 2, with  (10 -2 eV) 4 while m e 4 /  ~ and M pl 4 /  ~ The current acceleration of the Universe is well described by a c.c.,  /M pl 2, with  (10 -2 eV) 4 while m e 4 /  ~ and M pl 4 /  ~ Why is the vacuum energy so small when quantum effects lead to much bigger corrections? Why is the vacuum energy so small when quantum effects lead to much bigger corrections? Is the vacuum energy actually small or does it simply gravitate very little ? Is the vacuum energy actually small or does it simply gravitate very little ? idea behind degravitation Dvali, Hofmann&Khoury, hep-th/

Small c.c. / weakly gravitating In GR, gravity is mediated by a massless spin-2 particle and gauge invariance makes both questions equivalent. (universality of graviton coupling) In GR, gravity is mediated by a massless spin-2 particle and gauge invariance makes both questions equivalent. (universality of graviton coupling) If gravity was mediated by an effectively massive graviton, gravity would be weaker in the IR the vacuum energy (and other IR sources) would gravitate differently If gravity was mediated by an effectively massive graviton, gravity would be weaker in the IR the vacuum energy (and other IR sources) would gravitate differently Dvali, Hofmann&Khoury, hep-th/

Filtering gravity In Einstein’s gravity, the c.c. is bound to gravitate as any other source In Einstein’s gravity, the c.c. is bound to gravitate as any other source The idea behind degravitation is to promote the Newton’s constant G N to a filter operator, The idea behind degravitation is to promote the Newton’s constant G N to a filter operator,

Filtering gravity At short wavelengths compared to L, if  >0 G N G 0 N there is no filter and sources gravitate normally, At short wavelengths compared to L, if  >0 G N G 0 N there is no filter and sources gravitate normally, While at long distances, G N 0, so sources with large wavelengths, (such as the c.c.) are filtered out and effectively gravitate very weakly. While at long distances, G N 0, so sources with large wavelengths, (such as the c.c.) are filtered out and effectively gravitate very weakly. with

Filtering and graviton mass As such, the theory would not satisfy the Bianchi identity, As such, the theory would not satisfy the Bianchi identity, This cannot represent a consistent theory of massless spin-2 gravitons (with only 2 degrees of freedom) This cannot represent a consistent theory of massless spin-2 gravitons (with only 2 degrees of freedom) Instead the theory should be understood as the limit of a theory of massive gravity, with mass ~1/L. Instead the theory should be understood as the limit of a theory of massive gravity, with mass ~1/L.

Filtering and graviton mass Any degravitating (filter) theory must reduce at the linearized level to a theory of massive gravity Any degravitating (filter) theory must reduce at the linearized level to a theory of massive gravity Corresponding to the filter theory Corresponding to the filter theory

Filtering and graviton mass To be a satisfying ghost-free degravitating theory, the mass should satisfy with 0 d  < 1. To be a satisfying ghost-free degravitating theory, the mass should satisfy with 0 d  < 1.  = 1 corresponds to the effective 4d theory arising from the 5d DGP model.  = 1 corresponds to the effective 4d theory arising from the 5d DGP model. R (4) Dvali, Gabadadze & Porrati, hep-th/ R (5)

DGP – eg. of massive gravity Extra dof arise from 5d nature of theory. Extra dof arise from 5d nature of theory. We live in a (3+1)-brane embedded in an infinite flat extra dimension We live in a (3+1)-brane embedded in an infinite flat extra dimension Dvali, Gabadadze & Porrati, hep-th/ R (5)

DGP – eg. of massive gravity Extra dof arise from 5d nature of theory. Extra dof arise from 5d nature of theory. We live in a (3+1)-brane embedded in an infinite flat extra dimension We live in a (3+1)-brane embedded in an infinite flat extra dimension In the UV, the 4d curvature term dominates, gravity looks 4d In the UV, the 4d curvature term dominates, gravity looks 4d In the IR, gravity is 5d. In the IR, gravity is 5d. Dvali, Gabadadze & Porrati, hep-th/ R (4) R (5)

DGP – eg. of massive gravity Effective 4d propagator for DGP Effective 4d propagator for DGP This corresponds to a degravitating theory with  =1/2 with induced Friedmann eq. This corresponds to a degravitating theory with  =1/2 with induced Friedmann eq.  =1/2 is too large ! Is there an extension with  <1/2 ???  =1/2 is too large ! Is there an extension with  <1/2 ??? k: 4d momentum m 5 =M 5 3 /M 4 2 Cf. Ghazal Geshnizjani ’s talk

Gravity in higher dimensions For a given spectral representation, w e have the “Newtonian potential” For a given spectral representation, w e have the “Newtonian potential” In a (4+n)-dimensional spacetime, the gravitational potential goes as ie. In a (4+n)-dimensional spacetime, the gravitational potential goes as ie. If n=1 (DGP), in the IR G ~p -1  =1/2 If n=1 (DGP), in the IR G ~p -1  =1/2 If n=2, in the IR G ~ log p  =0 If n=2, in the IR G ~ log p  =0 Any higher dim DGP model corresponds to  =0. Any higher dim DGP model corresponds to  =0.  (s)~s n/2-1

Higher-codimension sources Cod-1 or pure tension cod-2 are the only meaningful distributional sources. (Geroch&Traschen) Cod-1 or pure tension cod-2 are the only meaningful distributional sources. (Geroch&Traschen) Arbitrary matter on cod-2 and higher distributions lead to metric divergences on the defect. The defect should be regularized. Arbitrary matter on cod-2 and higher distributions lead to metric divergences on the defect. The defect should be regularized. Geroch & Traschen, 1987

Cod-2 sources Cod-1 example Cod-1 example Cod-2 divergences Cod-2 divergences

Regularizing Cod-2 sources If we had instead the solution is regular (easier to see in momentum space) If we had instead the solution is regular (easier to see in momentum space) The new kinetic term plays the role of a regulator. Effectively represents a brane localized kinetic term. The new kinetic term plays the role of a regulator. Effectively represents a brane localized kinetic term.

Cascading gravity

Cod-2 cascading Consider the 6d action with couplings Consider the 6d action with couplings L1L1 L2L2 z y

Momentum space In momentum space, this corresponds to brane localized couplings  =-M 5 3 (q 5 +k 2 ), and 2 =-M 4 2 k 2. with 2 mass scales m 5 =M 5 3 /M 4 2 and m 6 = M 6 4 /M 5 3. In momentum space, this corresponds to brane localized couplings  =-M 5 3 (q 5 +k 2 ), and 2 =-M 4 2 k 2. with 2 mass scales m 5 =M 5 3 /M 4 2 and m 6 = M 6 4 /M 5 3. L1L1 L2L2 z y 

Cod-2 propagator Including both couplings, the propagator on the brane is Including both couplings, the propagator on the brane is As m 6 p k, the propagator behaves as in 6d (  =0) As m 6 p k, the propagator behaves as in 6d (  =0) As m 5 p k p m 6 it takes a 5d behavior As m 5 p k p m 6 it takes a 5d behavior At small scales, k p m 5, we recover 4d. At small scales, k p m 5, we recover 4d. log k log k 2 G -1

Cascading Gravity : A Naïve approach The generalization to gravity is straightforward The generalization to gravity is straightforward The tensor mode behaves precisely as the scalar field toy-model, The tensor mode behaves precisely as the scalar field toy-model, However one of the scalar modes propagates a ghost. However one of the scalar modes propagates a ghost.

Propagating modes Working around flat space-time, Working around flat space-time, where the tensor mode behaves as expected where the tensor mode behaves as expected and the scalar field  is also regularized by the cod-1 brane and the scalar field  is also regularized by the cod-1 brane source term

Ghost mode  is finite on the cod-2 brane,  is finite on the cod-2 brane, However in the UV,  ~ + T However in the UV,  ~ + T While in the IR,  ~ - T. While in the IR,  ~ - T. The kinetic term changes sign, signaling the presence of a ghost. The kinetic term changes sign, signaling the presence of a ghost. In the UV, the gravitational amplitude is In the UV, the gravitational amplitude is  

Ghost mode  is finite on the cod-2 brane,  is finite on the cod-2 brane, However in the UV,  ~ + T However in the UV,  ~ + T While in the IR,  ~ - T. While in the IR,  ~ - T. The kinetic term changes sign, signaling the presence of a ghost. The kinetic term changes sign, signaling the presence of a ghost. In the UV, the gravitational amplitude is In the UV, the gravitational amplitude is   = -1/3-1/6

Ghost mode This ghost is completely independent to the ghost present in the self-accelerating branch of DGP. This ghost is completely independent to the ghost present in the self-accelerating branch of DGP. However, it is generic to any cod-2 and higher framework with localized kinetic terms. However, it is generic to any cod-2 and higher framework with localized kinetic terms. In particular it is present when considering a pure cod-2 scenario (no cascading). In particular it is present when considering a pure cod-2 scenario (no cascading). L2L2 Gabadadze&Shifman hep-th/

Curing the ghost There are two ways to cure the ghost: 1. Adding a tension on the brane 2. Regularizing the brane. There are two ways to cure the ghost: 1. Adding a tension on the brane 2. Regularizing the brane.

Curing the ghost There are two ways to cure the ghost: 1. Adding a tension on the brane 2. Regularizing the brane. There are two ways to cure the ghost: 1. Adding a tension on the brane 2. Regularizing the brane. Both approaches lead to a well-defined 4d effective theory, with gravitational amplitude Both approaches lead to a well-defined 4d effective theory, with gravitational amplitude = 1/3-1/12 = 1/2-1/6-1/12

Cosmology Cf. Ghazal Geshnizjani ’s talk

de Sitter solutions To find some de Sitter solution, can slice the 6d Minkowski bulk as To find some de Sitter solution, can slice the 6d Minkowski bulk as and take the cod-1 brane located at the cod-2 at. and take the cod-1 brane located at the cod-2 at.

dS solutions in 6d The Cod-1 is not flat The Cod-1 is not flat But the brane adapts its position to balance the extrinsic curvature and the Einstein tensor on the brane for y > 0 But the brane adapts its position to balance the extrinsic curvature and the Einstein tensor on the brane for y > 0 R5R5R5R5for this configuration can only support a minimal H

dS solutions in 6d The Friedmann eq. on the brane is then The Friedmann eq. on the brane is then from brane EH R 4

dS solutions in 6d The Friedmann eq. on the brane is then The Friedmann eq. on the brane is then Solution only makes sense for minimal tension Solution only makes sense for minimal tension from brane EH R 4

dS solutions in 6d The Friedmann eq. on the brane is then The Friedmann eq. on the brane is then Solution only makes sense for minimal tension Solution only makes sense for minimal tension which is the same bound as the no-ghost condition in the deficit angle solution. which is the same bound as the no-ghost condition in the deficit angle solution. from brane EH R 4

Properties of the solution Away for the source, the cod-1 brane asymptotes to a constant position Away for the source, the cod-1 brane asymptotes to a constant position The 6d bulk is Minkowski (in non trivial coordinates) volume of the extra dimensions is infinite, there are no separate massless zero mode. The 6d bulk is Minkowski (in non trivial coordinates) volume of the extra dimensions is infinite, there are no separate massless zero mode. Asymptotically, the 5d brane is flat

Properties of the Friedmann eq. Does correspond to a IR modification of gravity Does correspond to a IR modification of gravity Could in principle have a large  with a small H Could in principle have a large  with a small H BUT still a local expression… BUT still a local expression…

Properties of the Friedmann eq. Does correspond to a IR modification of gravity Does correspond to a IR modification of gravity Could in principle have a large  with a small H Could in principle have a large  with a small H BUT still a local expression… BUT still a local expression… In the absence of brane EH term, there is a self- accelerating solution ghost?? In the absence of brane EH term, there is a self- accelerating solution ghost??

Properties of the Friedmann eq. Does correspond to a IR modification of gravity Does correspond to a IR modification of gravity Could in principle have a large  with a small H Could in principle have a large  with a small H BUT still a local expression… BUT still a local expression… In the absence of brane EH term, there is a self- accelerating solution ghost?? In the absence of brane EH term, there is a self- accelerating solution ghost?? although different from the “standard self-acceleration’’ although different from the “standard self-acceleration’’

Properties of the Friedmann eq. Does correspond to a IR modification of gravity Does correspond to a IR modification of gravity Could in principle have a large  with a small H Could in principle have a large  with a small H BUT still a local expression… BUT still a local expression… In the absence of brane EH term, there is a self- accelerating solution ghost?? In the absence of brane EH term, there is a self- accelerating solution ghost?? If the solution was unstable, would be interesting to see where it decays to… If the solution was unstable, would be interesting to see where it decays to…

Conclusions Models of massive gravity represent a novel framework to understand the c.c. problem Models of massive gravity represent a novel framework to understand the c.c. problem There is to date only one known ghost-free non- perturbative theory capable of exhibiting a model of massive gravity that does not violate Lorentz invariance: that is DGP and its Cascading extension. There is to date only one known ghost-free non- perturbative theory capable of exhibiting a model of massive gravity that does not violate Lorentz invariance: that is DGP and its Cascading extension.

Conclusion In 6d cascading gravity, there are at least 2 kind of different solutions for a pure tension source: In 6d cascading gravity, there are at least 2 kind of different solutions for a pure tension source: static, “wedge solution”  de Sitter solution 