1  2004 Morgan Kaufmann Publishers Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5 beq $t4,$t5,Label Next instruction is at Label.

Slides:



Advertisements
Similar presentations
Henk Corporaal TUEindhoven 2011
Advertisements

Review of the MIPS Instruction Set Architecture. RISC Instruction Set Basics All operations on data apply to data in registers and typically change the.
1 ECE462/562 ISA and Datapath Review Ali Akoglu. 2 Instruction Set Architecture A very important abstraction –interface between hardware and low-level.
1 ECE369 ECE369 Chapter 2. 2 ECE369 Instruction Set Architecture A very important abstraction –interface between hardware and low-level software –standardizes.
Chapter Three.
10/9: Lecture Topics Starting a Program Exercise 3.2 from H+P Review of Assembly Language RISC vs. CISC.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 5 MIPS ISA & Assembly Language Programming.
Chapter 2 Instructions: Language of the Computer
Chapter 2.
1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic.
1 CSE SUNY New Paltz Chapter 3 Machine Language Instructions.
1  2004 Morgan Kaufmann Publishers Chapter Three.
S. Barua – CPSC 440 CHAPTER 2 INSTRUCTIONS: LANGUAGE OF THE COMPUTER Goals – To get familiar with.
Recap.
1 Chapter 4: Arithmetic Where we've been: –Performance (seconds, cycles, instructions) –Abstractions: Instruction Set Architecture Assembly Language and.
Lecture 5 Sept 14 Goals: Chapter 2 continued MIPS assembly language instruction formats translating c into MIPS - examples.
1  1998 Morgan Kaufmann Publishers Chapter 3 Text in blue is by N. Guydosh Updated 1/27/04 Instructions: Language of the Machine.
Text-book Slides Chapters 1-2 Prepared by the publisher (We have not necessarily followed the same order)
1  2004 Morgan Kaufmann Publishers Chapter 2. 2  2004 Morgan Kaufmann Publishers Instructions: Language of the Machine We’ll be working with the MIPS.
1  1998 Morgan Kaufmann Publishers Chapter Four Arithmetic for Computers.
Chapter 3 Arithmetic for Computers. Arithmetic Where we've been: Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's.
©UCB CPSC 161 Lecture 5 Prof. L.N. Bhuyan
1 Bits are just bits (no inherent meaning) — conventions define relationship between bits and numbers Binary numbers (base 2)
1 CS/COE0447 Computer Organization & Assembly Language Chapter 3.
1 Modified from  Modified from 1998 Morgan Kaufmann Publishers Chapter Three: Arithmetic for Computers citation and following credit line is included:
Computing Systems Basic arithmetic for computers.
순천향대학교 정보기술공학부 이 상 정 1 2. Instructions: Language of the Computer.
1 EGRE 426 Fall 09 Handout Pipeline examples continued from last class.
1 EGRE 426 Fall 08 Chapter Three. 2 Arithmetic What's up ahead: –Implementing the Architecture 32 operation result a b ALU.
1  1998 Morgan Kaufmann Publishers Arithmetic Where we've been: –Performance (seconds, cycles, instructions) –Abstractions: Instruction Set Architecture.
1 CS/EE 362 Hardware Fundamentals Lecture 10 (Chapter 3: Hennessy and Patterson) Winter Quarter 1998 Chris Myers.
1 (Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3 rd Ed., Morgan Kaufmann,
1  1998 Morgan Kaufmann Publishers Machine Instructions: Language of the Machine Lowest level of programming, control directly the hardware Assembly instructions.
Computer Architecture (CS 207 D) Instruction Set Architecture ISA.
Oct. 25, 2000Systems Architecture I1 Systems Architecture I (CS ) Lecture 9: Alternative Instruction Sets * Jeremy R. Johnson Wed. Oct. 25, 2000.
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /08/2013 Lecture 10: MIPS Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER SCIENCE CENTRAL STATE.
Small constants are used quite frequently (50% of operands) e.g., A = A + 5; B = B + 1; C = C - 18; Solutions? Why not? put 'typical constants' in memory.
 1998 Morgan Kaufmann Publishers MIPS arithmetic All instructions have 3 operands Operand order is fixed (destination first) Example: C code: A = B +
MIPS Instructions Instructions: Language of the Machine
1 ELEN 033 Lecture 4 Chapter 4 of Text (COD2E) Chapters 3 and 4 of Goodman and Miller book.
EE472 – Spring 2007P. Chiang, with Slide Help from C. Kozyrakis (Stanford) ECE472 Computer Architecture Lecture #3—Oct. 2, 2007 Patrick Chiang TA: Kang-Min.
MIPS Instructions Instructions: Language of the Machine
Chapter 2 — Instructions: Language of the Computer — 1 Memory Operands Main memory used for composite data – Arrays, structures, dynamic data To apply.
순천향대학교 정보기술공학부 이 상 정 1 3. Arithmetic for Computers.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO Session 7, 8 Instruction Set Architecture.
Lec 11Systems Architecture1 Systems Architecture Lecture 11: Arithmetic for Computers Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all.
Branch Addressing op rs rt address address beq $s1, $s2, Label if ($s1 = =$s2) go to Label 6 bits 5 bits 5 bits 16 bits effective 32 bit address.
Instruction Set Architecture Chapter 3 – P & H. Introduction Instruction set architecture interface between programmer and CPU Good ISA makes program.
9/23/2004Comp 120 Fall September Chapter 4 – Arithmetic and its implementation Assignments 5,6 and 7 posted to the class web page.
1  1998 Morgan Kaufmann Publishers Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow.
May 2, 2001System Architecture I1 Systems Architecture I (CS ) Lecture 11: Arithmetic for Computers * Jeremy R. Johnson May 2, 2001 *This lecture.
1 CPTR 220 Computer Organization Computer Architecture Assembly Programming.
CS Computer Organization Numbers and Instructions Dr. Stephen P. Carl.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Yaohang Li.
Based on slides from D. Patterson and www-inst.eecs.berkeley.edu/~cs152/ COM 249 – Computer Organization and Assembly Language Chapter 3 Arithmetic For.
1 (Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3 rd Ed., Morgan Kaufmann,
Computer Architecture & Operations I
Computer Architecture & Operations I
ECE3055 Computer Architecture and Operating Systems Chapter 2: Procedure Calls & System Software These lecture notes are adapted from those of Professor.
Preliminary Computer Organization and Design 3rd edition, Designers Guide to VHDL. 1.
Instruction Set Architecture
Morgan Kaufmann Publishers
Computer Architecture (CS 207 D) Instruction Set Architecture ISA
CS170 Computer Organization and Architecture I
Henk Corporaal TUEindhoven 2010
Arithmetic Logical Unit
Computer Architecture & Operations I
The University of Adelaide, School of Computer Science
Computer Architecture
Machine Instructions.
Presentation transcript:

1  2004 Morgan Kaufmann Publishers Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5 beq $t4,$t5,Label Next instruction is at Label if $t4=$t5 Formats: Could specify a register (like lw and sw) and add it to address –use Instruction Address Register (PC = program counter) –most branches are local (principle of locality) Jump instructions just use high order bits of PC –address boundaries of 256 MB op rs rt 16 bit address I Addresses in Branches

2  2004 Morgan Kaufmann Publishers To summarize:

3  2004 Morgan Kaufmann Publishers

4 Design alternative: –provide more powerful operations –goal is to reduce number of instructions executed –danger is a slower cycle time and/or a higher CPI Let’s look (briefly) at IA-32 Alternative Architectures –“The path toward operation complexity is thus fraught with peril. To avoid these problems, designers have moved toward simpler instructions”

5  2004 Morgan Kaufmann Publishers IA : The Intel 8086 is announced (16 bit architecture) 1980: The 8087 floating point coprocessor is added 1982: The increases address space to 24 bits, +instructions 1985: The extends to 32 bits, new addressing modes : The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for higher performance) 1997: 57 new “MMX” instructions are added, Pentium II 1999: The Pentium III added another 70 instructions (SSE) 2001: Another 144 instructions (SSE2) 2003: AMD extends the architecture to increase address space to 64 bits, widens all registers to 64 bits and other changes (AMD64) 2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds more media extensions “This history illustrates the impact of the “golden handcuffs” of compatibility “adding new features as someone might add clothing to a packed bag” “an architecture that is difficult to explain and impossible to love”

6  2004 Morgan Kaufmann Publishers IA-32 Overview Complexity: –Instructions from 1 to 17 bytes long –one operand must act as both a source and destination –one operand can come from memory –complex addressing modes e.g., “base or scaled index with 8 or 32 bit displacement” Saving grace: –the most frequently used instructions are not too difficult to build –compilers avoid the portions of the architecture that are slow “what the 80x86 lacks in style is made up in quantity, making it beautiful from the right perspective”

7  2004 Morgan Kaufmann Publishers IA-32 Registers and Data Addressing Registers in the 32-bit subset that originated with 80386

8  2004 Morgan Kaufmann Publishers IA-32 Register Restrictions Registers are not “general purpose” – note the restrictions below

9  2004 Morgan Kaufmann Publishers IA-32 Typical Instructions Four major types of integer instructions: –Data movement including move, push, pop –Arithmetic and logical (destination register or memory) –Control flow (use of condition codes / flags ) –String instructions, including string move and string compare

10  2004 Morgan Kaufmann Publishers IA-32 instruction Formats Typical formats: (notice the different lengths)

11  2004 Morgan Kaufmann Publishers Instruction complexity is only one variable –lower instruction count vs. higher CPI / lower clock rate Design Principles: –simplicity favors regularity –smaller is faster –good design demands compromise –make the common case fast Instruction set architecture –a very important abstraction indeed! Summary

12  2004 Morgan Kaufmann Publishers Chapter Three

13  2004 Morgan Kaufmann Publishers Bits are just bits (no inherent meaning) — conventions define relationship between bits and numbers Binary numbers (base 2) decimal: n -1 Of course it gets more complicated: numbers are finite (overflow) fractions and real numbers negative numbers e.g., no MIPS subi instruction; addi can add a negative number How do we represent negative numbers? i.e., which bit patterns will represent which numbers? Numbers

14  2004 Morgan Kaufmann Publishers Sign Magnitude: One's Complement Two's Complement 000 = = = = = = = = = = = = = = = = = = = = = = = = -1 Issues: balance, number of zeros, ease of operations Which one is best? Why? Possible Representations

15  2004 Morgan Kaufmann Publishers 32 bit signed numbers: two = 0 ten two = + 1 ten two = + 2 ten two = + 2,147,483,646 ten two = + 2,147,483,647 ten two = – 2,147,483,648 ten two = – 2,147,483,647 ten two = – 2,147,483,646 ten two = – 3 ten two = – 2 ten two = – 1 ten maxint minint MIPS

16  2004 Morgan Kaufmann Publishers Negating a two's complement number: invert all bits and add 1 –remember: “negate” and “invert” are quite different! Converting n bit numbers into numbers with more than n bits: –MIPS 16 bit immediate gets converted to 32 bits for arithmetic –copy the most significant bit (the sign bit) into the other bits > > –"sign extension" (lbu vs. lb) Two's Complement Operations

17  2004 Morgan Kaufmann Publishers Just like in grade school (carry/borrow 1s) Two's complement operations easy –subtraction using addition of negative numbers Overflow (result too large for finite computer word): –e.g., adding two n-bit numbers does not yield an n-bit number note that overflow term is somewhat misleading, 1000 it does not mean a carry “overflowed” Addition & Subtraction