I II III I. Using Measurements CH. 2 - MEASUREMENT.

Slides:



Advertisements
Similar presentations
I. Units of Measurement (p )
Advertisements

Ch. 2 - Measurement III. Unit Conversions (p.39-41)
I II III III. Unit Conversions (p ) CH MEASUREMENT.
Measurement I. Units of Measurement  Number vs. Quantity  SI Base Units & Prefixes  Derived Units  Density Calculations.
I II III Unit Conversions MEASUREMENT. A. SI Prefix Conversions 1.Find the difference between the exponents of the two prefixes. 2.Move the decimal that.
I. Scientific Method. The Scientific Method A logical approach to solving problems or answering questions. Starts with observation- noting and recording.
Chapter 2: Measurement and Calculations… Section 2-1: Scientific Method (pg29-31) will not be explicitly covered but used throughout this entire class…
Scientific Notation Converting into Sci. Notation: –Move decimal until there’s 1 digit to its left. Places moved = exponent. –Large # (>1)  positive.
Unit 2. Measurement This lesson is 8 days long.
C. What are Significant Figures The places in the numbers that are important. They tell you how precise a measurement is. The places in the numbers that.
I II III I. Using Measurements CH. 2 - MEASUREMENT.
Section 2-2 Units of Measurement
Homework: Due Friday 9/4 Do 1-10 on a separate sheet of paper, include units. Do all problems on slide 25 as well.
I. Using Measurements (p )
Chapter 2: Measurement and Calculations… Section 2-1: Scientific Method (pg29-31) will not be explicitly covered but used throughout this entire class…
I II III III. Unit Conversions CH. 2 - MEASUREMENT.
Scientific Notation Converting into Sci. Notation: Converting into Sci. Notation:  Move decimal until there’s 1 digit to its left. Places moved = exponent.
I II III C. Johannesson III. Unit Conversions CH. 2 - MEASUREMENT.
Measuring. What are Significant Figures Any digit of a number that is known with certainty. They tell you how precise a measurement is. Any digit of a.
I II III Units of Measurement Scientific Measurement.
I II III I. Using Measurements CH. 2 - MEASUREMENT.
CH. 1 - MEASUREMENT I. Units of Measurement. Scientific Method.
I. Using Measurements MEASUREMENT IN SCIENCE. A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close.
Ch. 3, Scientific Measurement. Measurement Measurement: A quantity that has a number and a unit. Like 52 meters.
I II III I. Using Measurements MEASUREMENT. A. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how.
Ch. 3, Scientific Measurement. Measurement : A quantity that has a and a. Like 52 meters.
I. Using Measurements (p )
I II III I. Using Measurements (p. 8-15) CH MEASUREMENT.
Uncertainty in measurement  Every measurement has error associated with it.  The more precise the measurement the less error.  Error in a measurement.
I II III III. Also called the Factor-Label Method for solving problems Dimensional Analysis.
Chapter 2 - Section 3 Suggested Reading Pages Using Scientific Measurements.
Units of Measure & Conversions. Number vs. Quantity  Quantity - number + unit UNITS MATTER!!
I II III I. Using Measurements MEASUREMENT. A. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how.
III. Unit Conversions SI Prefix Conversions Dimensional Analysis
I II III Using Measurements MEASUREMENT. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how close.
Follow along in your text Chapter 1 Section 2 Pages Units of Measure & Conversions.
Scientific Notation and Significant Figures A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close.
I II III III. Using Measurements (p ) CH. 2 - MEASUREMENT.
What are we doing today Overview of chapter Time to work on review in groups Jeopardy Accuracy and Precision Video.
Measurements and Calculations Scientific Method Units of Measurement Using Scientific Measurements.
CH. 2 - MEASUREMENT. Observing and Collecting Data Data may be Qualitative (descriptive) Flower is red Quantitative (numerical) 100 flowers.
I. Using Measurements (p )
Course Outline Math Review Measurement Using Measurements.
Measurement I. Units of Measurement  Number vs. Quantity  SI Base Units & Prefixes  Derived Units  Density Calculations.
Unit 2. Measurement. Do Now  In your own words, what do you think is the difference between:  Accuracy and Precision?
Data Analysis. Scientific Method Not covered in class: Review.
Measurements and Calculations Scientific Method Units of Measurement Using Scientific Measurements.
I. Using Measurements (p )
III. Using Measurements (p )
Measurement.
CH. 2 - MEASUREMENT I. Using Measurements.
CH. 1 - MEASUREMENT I. Units of Measurement.
Measurement Accuracy vs Precision Percent Error Significant Figures
Scientific Notation 65,000 kg  6.5 × 104 kg
I. Using Measurements (p )
Measurement Accuracy vs Precision SI Units Dimensional Analysis
-Accuracy & Precision - Significant Digits -Scientific Notation
MEASUREMENT I. Units of Measurement.
Dimensional Analysis.
Dimensional Analysis, Significant Figures, & the Metric System
Measurement – The Metric System
I. Using Measurements (p )
Section 2-3 Using Measurements
CH. 2 - MEASUREMENT I. Using Measurements.
MEASUREMENT Using Measurements C. Johannesson.
CH. 1- MEASUREMENT II. Using Measurements.
CH. 2 - MEASUREMENT I. Using Measurements.
I. Using Measurements (p )
I. Using Measurements (pp )
Presentation transcript:

I II III I. Using Measurements CH. 2 - MEASUREMENT

A. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how close a series of measurements are to each other ACCURATE = CORRECT PRECISE = CONSISTENT

C. Significant Figures  Indicate precision of a measurement.  Recording Sig Figs  Sig figs in a measurement include the known digits plus a final estimated digit 2.32 cm

C. Significant Figures  Counting Sig Figs  Count all numbers EXCEPT:  Leading zeros  Trailing zeros without a decimal point -- 2,500  USA??

, C. Significant Figures Counting Sig Fig Examples , sig figs 3 sig figs 2 sig figs

C. Significant Figures  Calculating with Sig Figs  Multiply/Divide - The # with the fewest sig figs determines the # of sig figs in the answer. (13.91g/cm 3 )(23.3cm 3 ) = g 324 g 4 SF3 SF

C. Significant Figures  Calculating with Sig Figs (con’t)  Add/Subtract - The # with the lowest decimal value determines the place of the last sig fig in the answer mL mL 7.85 mL  7.9 mL 3.75 mL mL 7.85 mL

C. Significant Figures  Calculating with Sig Figs (con’t)  Exact Numbers do not limit the # of sig figs in the answer.  Counting numbers: 12 students  Exact conversions: 1 m = 100 cm  “1” in any conversion: 1 in = 2.54 cm

C. Significant Figures 5. (15.30 g) ÷ (6.4 mL) Practice Problems = g/mL  18.1 g g g g 4 SF2 SF  2.4 g/mL 2 SF

D. Scientific Notation  Converting into Sci. Notation:  Move decimal until there’s 1 digit to its left. Places moved = exponent.  Large # (>1)  positive exponent Small # (<1)  negative exponent  Only include sig figs. 65,000 kg  6.5 × 10 4 kg

D. Scientific Notation 7. 2,400,000  g kg 9.7  km  10 4 mm Practice Problems 2.4  10 6  g 2.56  kg km 62,000 mm

D. Scientific Notation  Calculating with Sci. Notation (5.44 × 10 7 g) ÷ (8.1 × 10 4 mol) = 5.44 EXP EE ÷ ÷ EXP EE ENTER EXE = = 670 g/mol= 6.7 × 10 2 g/mol Type on your calculator:

E. SI Units QuantityBase UnitAbbrev. Length Mass Time Temp meter kilogram second kelvin m kg s K Amountmolemol Symbol l m t T n

F. Derived Units  Combination of base units.  Volume (m 3 or cm 3 )  length  length  length D = MVMV 1 cm 3 = 1 mL 1 dm 3 = 1 L  Density (kg/m 3 or g/cm 3 )  mass per volume

Problem-Solving Steps 1. Analyze 2. Plan 3. Compute 4. Evaluate

Density  An object has a volume of 825 cm 3 and a density of 13.6 g/cm 3. Find its mass. GIVEN: V = 825 cm 3 D = 13.6 g/cm 3 M = ? WORK : M = DV M = (13.6 g/cm 3 )(825cm 3 ) M = 11,200 g

Density  A liquid has a density of 0.87 g/mL. What volume is occupied by 25 g of the liquid? GIVEN: D = 0.87 g/mL V = ? M = 25 g WORK : V = M D V = 25 g 0.87 g/mL V = 29 mL

SI Prefix Conversions mega-M10 6 deci-d10 -1 centi-c10 -2 milli-m10 -3 PrefixSymbolFactor micro-  nano-n10 -9 pico-p kilo-k10 3 move left move right BASE UNIT

SI Unit Conversions  King Henry Died__drinking chocolate milk  K H D __ d C M

= SI Prefix Conversions NUMBER UNIT NUMBER UNIT 532 m = _______ km 0.532

SI Prefix Conversions 1) 20 cm = ______________ m 2) L = ______________ mL 3) 45 m = ____ mm 4) 805 dm = ______________ km ,000 32

Dimensional Analysis  Steps: 1. Identify starting & ending units. 2. Line up conversion factors so units cancel. 3. Multiply all top numbers & divide by each bottom number. 4. Check units & answer.

Dimensional Analysis  Lining up conversion factors: 1 in = 2.54 cm 2.54 cm 1 in = 2.54 cm 1 in 1 in = 1 1 =

Dimensional Analysis  How many milliliters are in 1.00 quart of milk? (1L = qt) 1.00 qt 1 L qt = 946 mL qtmL 1000 mL 1 L 

Dimensional Analysis  You have 1.5 pounds of gold. Find its volume in cm 3 if the density of gold is 19.3 g/cm 3. (1 kg = 2.2 lbs) lbcm lb 1 kg 2.2 lb = 35 cm g 1 kg 1 cm g

Dimensional Analysis 5) Your European hairdresser wants to cut your hair 8.0 cm shorter. How many inches will he be cutting off? (1 in=2.54cm) 8.0 cm1 in 2.54 cm = 3.2 in cmin