1 Berendt: Knowledge and the Web, 1st semester 2014/2015, 1 Knowledge and the Web Inference on the Semantic.

Slides:



Advertisements
Similar presentations
A Controlled Natural Language Interface for Semantic MediaWiki Jie Bao Rensselaer Polytechnic Institute Paul R. Smart, Nigel R. Shadbolt University of.
Advertisements

1 ISWC-2003 Sanibel Island, FL IMG, University of Manchester Jeff Z. Pan 1 and Ian Horrocks 1,2 {pan | 1 Information Management.
Brief History of Knowledge Representation, Description Logics and OWL OpenGALEN BioHealth Informatics Group © University of Manchester.
SPARQL Dimitar Kazakov, with references to material by Noureddin Sadawi ARIN, 2014.
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
Chronos: A Tool for Handling Temporal Ontologies in Protégé
An Introduction to RDF(S) and a Quick Tour of OWL
Based on “A Practical Introduction to Ontologies & OWL” © 2005, The University of Manchester A Practical Introduction to Ontologies & OWL Session 3: Additional.
1 OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors & Common Patterns Alan Rector 1, Nick Drummond 1, Matthew Horridge 1, Jeremy Rogers.
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
OWL TUTORIAL APT CSA 3003 OWL ANNOTATOR Charlie Abela CSAI Department.
Chapter 8: Web Ontology Language (OWL) Service-Oriented Computing: Semantics, Processes, Agents – Munindar P. Singh and Michael N. Huhns, Wiley, 2005.
Protégé Classes, Properties and Instances Susana R. de Novoa UNIK4710.
1 CSC 9010 Spring, Paula MatuszekSome slides taken from
The Semantic Web – WEEK 11: Description Logic + OWL Featuring..MAD COWS.
1 An Introduction To The Semantic Web. 2 Information Access on the Web Find an mp3 of a song that was on the Billboard Top Ten that features a cowbell.
Chapter 8: Web Ontology Language (OWL) Service-Oriented Computing: Semantics, Processes, Agents – Munindar P. Singh and Michael N. Huhns, Wiley, 2005.
Storing and Retrieving Biological Instances with the Instance Store Daniele Turi, Phillip Lord, Michael Bada, Robert Stevens.
The Semantic Web Week 15 Reasoning with (and Visualising) Ontologies Module Website: Practical :Protégé-2000 WITH.
COMP 6703 eScience Project Semantic Web for Museums Student : Lei Junran Client/Technical Supervisor : Tom Worthington Academic Supervisor : Peter Strazdins.
The Semantic Web Week 14 Module Website: Lecture (SHORT): OWL PIZZAS Practical (LONGER): Getting to know Protégé-2000.
Semantic Web Ontologies (continued) Expressing, Querying, Building CS 431 – April 6, 2005 Carl Lagoze – Cornell University.
DAML+OIL Ontology Tutorial Chris Wroe, Robert Stevens (Sean Bechhofer, Carole Goble, Alan Rector, Ian Horrocks….) University of Manchester.
OWL: Web Ontology Language
1 Making OWL Easier: Practical Ontology Development in using Protégé-OWL-CO-ODE Tools Alan Rector, Hai Wang, Jeremy Rogers with acknowledgement to Nick.
OWL and SDD Dave Thau University of Kansas
Building an Ontology of Semantic Web Techniques Utilizing RDF Schema and OWL 2.0 in Protégé 4.0 Presented by: Naveed Javed Nimat Umar Syed.
SQL Databases are a Moving Target Juan F. Sequeda – Syed Hamid Tirmizi –
OWL 2 in use. OWL 2 OWL 2 is a knowledge representation language, designed to formulate, exchange and reason with knowledge about a domain of interest.
Michael Eckert1CS590SW: Web Ontology Language (OWL) Web Ontology Language (OWL) CS590SW: Semantic Web (Winter Quarter 2003) Presentation: Michael Eckert.
BioHealth Informatics Group A Practical Introduction to Ontologies & OWL Session 2: Defined Classes and Additional Modelling Constructs in OWL Nick Drummond.
SEMANTIC WEB FOR A HOSPITAL
1 Berendt: Advanced databases, first semester 2011, 1 Advanced databases – Inferring new knowledge.
Ontology Building in Action Hasan TÜRKSOY Compiled, partly based on various online tutorials and presentations, with respect to their authors.
Semantic Web Constraint Language complement and the editor development in Protégé Piao Guangyuan.
1 Berendt: Advanced databases, 1st semester 2012/2013, 1 Advanced databases – Inference on the Semantic Web.
Based on “A Practical Introduction to Ontologies & OWL” © 2005, The University of Manchester A Practical Introduction to Ontologies & OWL Session 2: Defined.
Artificial Intelligence 2004 Ontology
Organization of the Lab Three meetings:  today: general introduction, first steps in Protégé OWL  November 19: second part of tutorial  December 3:
2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester1 Protégé-OWL Tutorial Session 2: Defined Classes Nick Drummond.
2nd Sept 2004UK e-Science all hands meeting1 Designing User Interfaces to Minimise Common Errors in Ontology Development Alan Rector, Nick Drummond, Matthew.
Protégé-OWL Screens Introduction* *Summarized from various examples from the Protégé web site ( and interacting with the tool.
Semantic Web BY: Josh Rachner and Julio Pena. What is the Semantic Web? The semantic web is a part of the world wide web that allows data to be better.
Forschungszentrum Informatik, Karlsruhe FZI Research Center for Information Science at the University of Karlsruhe Variance in e-Business Service Discovery.
Ontology Engineering Lab #5 – September 30, 2013.
6 Dec Rev. 14 Dec CmpE 583 Fall 2008OWL Intro 1 OWL Intro Notes off Lacy Ch. 4 Atilla Elçi.
OWL & Protege Introduction Dongfang Xu Ph.D student, School of Information, University of Arizona Sept 10, 2015.
Practical RDF Chapter 12. Ontologies: RDF Business Models Shelley Powers, O’Reilly SNU IDB Lab. Taikyoung Kim.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 12 RDF, OWL, Minimax.
1 Foundations of the Semantic Web: Ontology Engineering Building Ontologies 1b Classes and Instances Concepts & Individuals Alan Rector & colleagues Special.
References [1] D:\My Documents\SemanticWebWorkshop\kaynak\Ian Horrocks - CS646\intro-2004.pptD:\My Documents\SemanticWebWorkshop\kaynak\Ian Horrocks -
Ontology domain & modeling extensions. Modeling enhancements: overview Enhancements: – Increased expressivity in ontology – Increased expressivity in.
1 1 1 Berendt: Advanced databases, first semester 2008, Advanced databases – Semantic Web Mining.
Modeling Life Science Knowledge with OWL 1.1 Michel Dumontier & Natalia Villanueva-Rosales Department of Biology, Institute of Biochemistry, School of.
OWL Web Ontology Language Summary IHan HSIAO (Sharon)
BioHealth Informatics Group Copyright © 2005, The University of Manchester1 A Practical Introduction to Ontologies & OWL Additional Exercises: Common Errors.
Ontology Technology applied to Catalogues Paul Kopp.
Ccs.  Ontologies are used to capture knowledge about some domain of interest. ◦ An ontology describes the concepts in the domain and also the relationships.
BBY 464 Semantic Information Management (Spring 2016) Ontologies and OWL: Web Ontology Language Yaşar Tonta & Orçun Madran [yasartonta,
Knowledge Representation Part II Description Logic & Introduction to Protégé Jan Pettersen Nytun.
Lab exercise - 3a Alan Rector & colleagues
Session 2: Defined Classes Nick Drummond
Ontology.
CS646: OWL Tutorial (session 2)
ece 720 intelligent web: ontology and beyond
OWL and Inference: Practical examples Sean Bechhofer
Service-Oriented Computing: Semantics, Processes, Agents
Foundations of the Semantic Web: Ontology Engineering
Ontology.
Presentation transcript:

1 Berendt: Knowledge and the Web, 1st semester 2014/2015, 1 Knowledge and the Web Inference on the Semantic Web Bettina Berendt KU Leuven, Department of Computer Science Last update: October 15, 2014

2 Berendt: Knowledge and the Web, 1st semester 2014/2015, 2 Agenda OWL: Protégé interface, XML/RDF OWL viewed as a description logics: basics OWL: another syntax (for the examples that follow) OWL inference examples Common problems in using OWL reasoning

3 Berendt: Knowledge and the Web, 1st semester 2014/2015, 3 Agenda OWL: Protégé interface, XML/RDF OWL viewed as a description logics: basics OWL: another syntax (for the examples that follow) OWL inference examples Common problems in using OWL reasoning

4 Berendt: Knowledge and the Web, 1st semester 2014/2015, 4 Motivation; deductive and inductive reasoning (ex.s) n Deductive reasoning l All swans are white. l Tilly is a swan.  Tilly is white. l Truth-preserving! n Inductive reasoning l Tilly and Edda and Edwin and … are swans. l Tilly and Edda and Edwin and … are white.  All swans are white. l „Bringing new knowledge into the world“

5 Berendt: Knowledge and the Web, 1st semester 2014/2015, 5 (OWL slides)

6 Berendt: Knowledge and the Web, 1st semester 2014/2015, 6 Agenda OWL: Protégé interface, XML/RDF OWL viewed as a description logics: basics OWL: another syntax (for the examples that follow) OWL inference examples Common problems in using OWL reasoning

7 Berendt: Knowledge and the Web, 1st semester 2014/2015, 7 OWL Abstract Syntax / OWL Functional Syntax (ex. 1) Class(bus partial vehicle) XML/RDF Functional syntax Pro- tégé

8 Berendt: Knowledge and the Web, 1st semester 2014/2015, 8 OWL Abstract Syntax / OWL Functional Syntax (ex. 2) (in the Protégé editor: “Person and drives some Bus“ ) Class(bus_driver complete intersectionOf( person restriction(drives someValuesFrom (bus))))

9 Berendt: Knowledge and the Web, 1st semester 2014/2015, 9 Agenda OWL: Protégé interface, XML/RDF OWL viewed as a description logics: basics OWL: another syntax (for the examples that follow) OWL inference examples Common problems in using OWL reasoning

10 Berendt: Knowledge and the Web, 1st semester 2014/2015, 10 Examples: Class inferences (1) Class(a:bus_driver complete intersectionOf( a:person restriction(a:drives someValuesFrom (a:bus)))) Class(a:driver complete intersectionOf( a:person restriction(a:drives someValuesFrom(a:vehicle)))) Class(a:bus partial a:vehicle) Note: a is the namespace used throughout these examples

11 Berendt: Knowledge and the Web, 1st semester 2014/2015, 11 Examples: Class inferences (2) Class(a:cat_owner complete intersectionOf( a:person restriction(a:has_pet someValuesFrom (a:cat)))) SubPropertyOf(a:has_pet a:likes) Class(a:cat_liker complete intersectionOf( a:person restriction(a:likes someValuesFrom (a:cat))))

12 Berendt: Knowledge and the Web, 1st semester 2014/2015, 12 Examples: Class inferences (3) Class(a:driver complete intersectionOf( a:person restriction(a:drives someValuesFrom(a:vehicle)))) Class(a:driver partial a:adult) Class(a:grownup complete intersectionOf( a:adult a:person))

13 Berendt: Knowledge and the Web, 1st semester 2014/2015, 13 Examples: Class inferences (4) Class(a:sheep partial a:animal restriction(a:eats allValuesFrom (a:grass))) Class(a:grass partial a:plant) DisjointClasses( unionOf(a:animal restriction(a:part_of someValuesFrom (a:animal))) unionOf(a:plant restriction(a:part_of someValuesFrom (a:plant)))) Class(a:vegetarian complete intersectionOf( a:animal restriction(a:eats allValuesFrom (complementOf(a:animal))))) restriction(a:eats allValuesFrom (complementOf(restriction(a:part_of someValuesFrom (a:animal))))) This was missing on your printouts

14 Berendt: Knowledge and the Web, 1st semester 2014/2015, 14 Examples: Class inferences (5) Class(a:giraffe partial a:animal restriction(a:eats allValuesFrom (a:leaf))) Class(a:leaf partial restriction(a:part_of someValuesFrom (a:tree))) Class(a:tree partial a:plant) DisjointClasses( unionOf(restriction(a:part_of someValuesFrom (a:animal)) a:animal) unionOf(a:plant restriction(a:part_of someValuesFrom (a:plant)))) Class(a:vegetarian complete intersectionOf( a:animal restriction(a:eats allValuesFrom (complementOf(restriction(a:part_of someValuesFrom (a:animal))))) restriction(a:eats allValuesFrom (complementOf(a:animal)))))

15 Berendt: Knowledge and the Web, 1st semester 2014/2015, 15 Examples: Class inferences (6) Class(a:old_lady complete intersectionOf(a:person a:female a:elderly)) Class(a:old_lady partial intersectionOf( restriction(a:has_pet someValuesFrom (a:animal)) restriction(a:has_pet allValuesFrom (a:cat)))) Class(a:cat_owner complete intersectionOf( a:person restriction(a:has_pet someValuesFrom (a:cat))))

16 Berendt: Knowledge and the Web, 1st semester 2014/2015, 16 Examples: Class inferences (7) Class(a:cow partial a:vegetarian) DisjointClasses( unionOf(a:animal restriction(a:part_of someValuesFrom (a:animal))) unionOf(a:plant restriction(a:part_of someValuesFrom (a:plant)))) Class(a:vegetarian complete intersectionOf( a:animal restriction(a:eats allValuesFrom (complementOf(restriction(a:part_of someValuesFrom (a:animal))))) restriction(a:eats allValuesFrom (complementOf(a:animal))))) Class(a:mad_cow complete intersectionOf( a:cow restriction(a:eats someValuesFrom (intersectionOf(restriction(a:part_of someValuesFrom (a:sheep)) a:brain))))) Class(a:sheep partial a:animal restriction(a:eats allValuesFrom (a:grass)))

17 Berendt: Knowledge and the Web, 1st semester 2014/2015, 17 Examples: Instance inferences (1) Individual(a:Spike type(owl:Thing) value(a:is_pet_of a:Pete)) Individual(a:Pete type(owl:Thing)) ObjectProperty(a:has_pet domain(a:person) range(a:animal)) ObjectProperty(a:is_pet_of inverseOf(a:has_pet))

18 Berendt: Knowledge and the Web, 1st semester 2014/2015, 18 Examples: Instance inferences (2) Individual(a:Daily_Mirror type(owl:Thing)) Individual(a:Nick type(a:male) value(a:drives a:Q123_ABC) value(a:reads a:Daily_Mirror)) Individual(a:Q123_ABC type(a:van) type(a:white_thing)) Class(a:white_van_man complete intersectionOf( a:man restriction(a:drives someValuesFrom (intersectionOf(a:van a:white_thing))))) Class(a:white_van_man partial restriction(a:reads allValuesFrom (a:tabloid)))

19 Berendt: Knowledge and the Web, 1st semester 2014/2015, 19 Examples: Instance inferences (3) Individual(a:Walt type(a:person) value(a:has_pet a:Huey) value(a:has_pet a:Louie) value(a:has_pet a:Dewey)) Individual(a:Huey type(a:duck)) Individual(a:Dewey type(a:duck)) Individual(a:Louie type(a:duck)) DifferentIndividuals(a:Huey a:Dewey a:Louie) Class(a:animal_lover complete intersectionOf( a:person restriction(a:has_pet minCardinality(3))))

20 Berendt: Knowledge and the Web, 1st semester 2014/2015, 20 Examples: Instance inferences (4) Individual(a:Minnie type(a:female) type(a:elderly) value(a:has_pet a:Tom)) Individual(a:Tom type(owl:Thing)) ObjectProperty(a:has_pet domain(a:person) range(a:animal)) Class(a:old_lady complete intersectionOf(a:person a:female a:elderly)) Class(a:old_lady partial intersectionOf( restriction(a:has_pet someValuesFrom (a:animal)) restriction(a:has_pet allValuesFrom (a:cat ))))

21 Berendt: Knowledge and the Web, 1st semester 2014/2015, 21 Agenda OWL: Protégé interface, XML/RDF OWL viewed as a description logics: basics OWL: another syntax (for the examples that follow) OWL inference examples Common problems in using OWL reasoning

22 Berendt: Knowledge and the Web, 1st semester 2014/2015, 22 Properties and existential restrictions Yet another syntax: Read this as intersectionOf (Pizza restriction1 restriction2)

23 Berendt: Knowledge and the Web, 1st semester 2014/2015, 23 Primitive and defined classes

24 Berendt: Knowledge and the Web, 1st semester 2014/2015, 24 Open world reasoning (1)

25 Berendt: Knowledge and the Web, 1st semester 2014/2015, 25 Open world reasoning (2): Is this a Margherita Pizza?

26 Berendt: Knowledge and the Web, 1st semester 2014/2015, 26 Open world reasoning (3): closure restrictions/axioms – what does this exclude?

27 Berendt: Knowledge and the Web, 1st semester 2014/2015, 27 Domain and range restrictions are axioms – or: when should you not use domain/range, but restrictions instead?

28 Berendt: Knowledge and the Web, 1st semester 2014/2015, 28 „and“ and „or“ in logics vs. in natural language, “all“ vs. “some“ - what do these 2 definitions say? Is this the intention? How can it be expressed better?

29 Berendt: Knowledge and the Web, 1st semester 2014/2015, 29 Does „only“ ( allValuesFrom ) imply „some“ ( someValuesFrom )? Is an EmptyPizza a VegetarianPizza?

30 Berendt: Knowledge and the Web, 1st semester 2014/2015, 30 „some not …“ vs. „not some …“: what does this definition say? Is this the intention? How can it be expressed better?

31 Berendt: Knowledge and the Web, 1st semester 2014/2015, 31 Task for the next week n Find 3 ontological statements on the Semantic Web, for example using Sindice. n Paraphrase what they mean. n Find 1 statement involving owl:EquivalentClass. What problems are likely to arise when statements made about this class (with its two names) come from different knowledge sources?

32 Berendt: Knowledge and the Web, 1st semester 2014/2015, 32 Outlook OWL: Protégé interface, XML/RDF OWL viewed as a description logics: basics OWL: another syntax (for the examples that follow) OWL inference examples Common problems in using OWL reasoning Combining SW data: Schema/ontology matching

33 Berendt: Knowledge and the Web, 1st semester 2014/2015, 33 Used sources OWL specification at resp. Difference between OWL Lite, DL, and Full by Ritesh Agrawal (2007) at OWL Abstract Syntax: A short summary here: pp. 10ff.: Bechhofer, S. (2003). OWL Reasoning Examples. pp. 22ff.: Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch, Robert Stevens, Hai Wang, Chris Wroe: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors & Common Patterns. EKAW 2004: Picture credits: see PPT „comments“ field