The Isosceles Triangles Theorems Section 4-6 Isosceles Triangle Theorem  If 2 sides of a triangle are congruent, then the angles opposite those sides.

Slides:



Advertisements
Similar presentations
CHAPTER 4 Congruent Triangles SECTION 4-1 Congruent Figures.
Advertisements

4-5 Isosceles and Equilateral Triangles Learning Goal 1. To use and apply properties of isosceles and equilateral triangles.
4-5 Isosceles and Equilateral Triangles. Isosceles Triangles The congruent sides of an isosceles triangle are its legs. The third side is the base. The.
Adapted from Walch Education Isosceles triangles have at least two congruent sides, called legs. The angle created by the intersection of the legs is.
4.6 The Isosceles Triangle Theorems Base Angles and Opposite Sides Hypotenuse - Leg.
Isosceles and Equilateral Triangles
4.5 - Isosceles and Equilateral Triangles. Isosceles Triangles The congruent sides of an isosceles triangles are called it legs. The third side is the.
4.5 Isosceles and Equilateral Triangles The congruent sides of an isosceles triangle are its legs. The third side is the base. The two congruent legs form.
Isosceles and Equilateral Triangles Chapter 4 Section 5.
ISOSCELES TRIANGLES 1 Modified by Lisa Palen. PARTS OF AN ISOSCELES TRIANGLE An isosceles triangle is a triangle with at least two congruent sides. The.
It does not do to dwell on dreams… and forget to live. -Dumbledore 4.5: Isosceles and Equilateral Triangles.
Isosceles, Equilateral, and Right Triangles Sec 4.6 GOAL: To use properties of isosceles, equilateral and right triangles To use RHL Congruence Theorem.
4.5 Isosceles and Equilateral Triangles. Isosceles Triangles At least two sides are of equal length. It also has two congruent angles. Base Angles Base.
Isosceles and Equilateral Triangles Section 5-1. Isosceles Triangle A triangle with at least two congruent sides. Leg Leg Base Vertex Angle Base Angles.
Theorems: Isosceles Triangles
Warm-Up Find the value of x. x x - 3. GEOMETRY 4-8 Isosceles and Equilateral Triangles.
1 4-5 Isosceles and Equilateral Triangles State and apply the Isosceles Triangle Theorem and its converse State and apply the corollaries for equilateral.
Use Isosceles and Equilateral Triangles
Quiz Tell whether the pair of triangles is congruent or not and why
4-6 Isosceles & Equilateral Triangles
4.5: Isosceles and Equilateral Triangles Objective: To use and apply properties of isosceles and equilateral triangles.
4-5 Isosceles and Equilateral Triangles
1 Isosceles and Equilateral Triangles. 2 Parts of an Isosceles Triangle An isosceles triangle is a triangle with two congruent sides. The congruent sides.
CH. 4.7 USE ISOSCELES & EQUILATERAL TRIANGLES. VOCAB Leg: 2 sides of isosceles triangle Leg Vertex Angle: Angle formed by the two legs Base: 3 rd side.
Geometry Ms. Stawicki.  1) To use and apply properties of isosceles triangles.
Triangles Review.
Section 4-4: The Isosceles Triangle Theorems
Section 4-5: Isosceles and Equilateral Triangles.
Isosceles Triangle ABC Vertex Angle Leg Base Base Angles.
Triangle Sum Theorem The sum of the angle measures in a triangle is 180 degrees.
It does not do to dwell on dreams… and forget to live. -Dumbledore 4.5: Isosceles and Equilateral Triangles It does not do to dwell on dreams… and forget.
4.3 ISOSCELES AND EQUILATERAL TRIANGLES. VOCABULARY Two angles of an isosceles triangle are always congruent. These are the angles opposite the congruent.
Isosceles and Equilateral Triangles
Triangle Congruence 4.5 Isosceles and Equilateral Triangles.
Isosceles Triangles Theorems Theorem 8.12 – If two sides of a triangle are equal in measure, then the angles opposite those sides are equal in measure.
October 8,  As we discussed in a previous section isosceles triangles are triangles with at least two sides congruent.  The two congruent sides.
Applied Geometry Lesson: 6 – 4 Isosceles Triangles Objective: Learn to identify and use properties of isosceles triangles.
Analyzing Isosceles Triangles Chapter 4, Section 6.
Have your yellow packet out from Tuesday please.
4.5 isosceles and Equilateral Triangles -Theorem 4.3: Isosceles Triangle theorem says if 2 sides of a triangle are congruent, then the angles opposite.
Isosceles Triangles A B C
Warm up… Supply the reasons in the two column proof and turn it in
Isosceles and Equilateral Triangles
4.5 Isosceles and Equilateral Triangles
4-5 Isosceles and Equilateral Triangles
The Isosceles Triangle Theorems
Date: Topic: Isosceles Triangle Theorem (6.1.C)
Lesson 4.6 Isosceles Triangles.
Isosceles & Equilateral Triangles
Types of Triangles and Their Properties
Proving Theorems about Isosceles Triangles (5.6.2)
Section 4.5 isosceles & equilateral triangles
Triangles Review.
Objective: To use and apply properties of isosceles triangles.
Lesson 3-2 Isosceles Triangles.
4.5 - Isosceles and Equilateral Triangles
(The Isosceles Triangle Theorems)
The Isosceles Triangle Theorems
4.1 Congruent Figures -Congruent Polygons: have corresponding angles and sides -Theorem 4.1: If 2 angles of 1 triangle are congruent to 2 angles of another.
Isosceles, Equilateral, and Right Triangles
Isosceles and Equilateral Triangles
5.4 Isosceles and Equilateral Triangles.
Isosceles, Equilateral, and Right Triangles
(The Isosceles Triangle Theorems)
Equilateral TRIANGLES
Lesson 3-2 Isosceles Triangles.
Isosceles and Equilateral Triangles
Module 15: Lesson 2 Isosceles & Equilateral Triangles
4.4 The Isosceles Triangle Theorems Objectives: Legs/base Isosceles Triangle Th.
Section 3.3 Isosceles Triangles
Presentation transcript:

The Isosceles Triangles Theorems Section 4-6

Isosceles Triangle Theorem  If 2 sides of a triangle are congruent, then the angles opposite those sides are congruent

Theorem 4-10  If 2 angles of a triangle are congruent, then the sides opposite those angles are congruent.

Corollaries 4.3 and 4.4  A triangle is equilateral if and only if it is equiangular.  Each angle of an equilateral triangle measures 60 degrees

 Parts of an Isosceles Triangle leg base vertex angle base angles

 The bisector of the vertex angle of an isosceles triangle is perpendicular to the base at its midpoint.

Joke Time Who was the first math student? Add-em

 Why isn’t your nose 12 inches long?  Because then it would be a foot