6-8 Transforming Polynomial Functions Warm Up Lesson Presentation

Slides:



Advertisements
Similar presentations
Using Transformations to Graph Quadratic Functions 5-1
Advertisements

Introduction to Parent Functions
Algebra Transforming Linear Functions
BELLWORK Give the coordinates of each transformation of (2, –3).
Section 2.6 – Families of Functions Different nonvertical lines have different slopes, or y-intercepts or both. They are graphs of different linear functions.
Transforming Linear Functions
Unit 1: Functions Minds On More Graphing!!! .
Curving Fitting with 6-9 Polynomial Functions Warm Up
Unit 3 Functions (Linear and Exponentials)
Objective Transform polynomial functions..
Exploring Transformations
1 Transformations of Functions SECTION Learn the meaning of transformations. Use vertical or horizontal shifts to graph functions. Use reflections.
Lesson 5-8 Graphing Absolute Value Functions
Introduction to Parent Functions
Table of Contents Functions: Transformations of Graphs Vertical Translation: The graph of f(x) + k appears.
In Lesson 1-8, you learned to transform functions by transforming each point. Transformations can also be expressed by using function notation.
Section 3.2 Notes Writing the equation of a function given the transformations to a parent function.
I can graph and transform absolute-value functions.
Exploring Transformations
Transform quadratic functions.
Radical Functions 8-7 Warm Up Lesson Presentation Lesson Quiz
Warm Up Identify the domain and range of each function.
2.2 b Writing equations in vertex form
Unit 5 – Linear Functions
6-8 Graphing Radical Functions
An absolute-value function is a function whose rule contains an absolute-value expression. The graph of the parent absolute-value function f(x) = |x| has.
3-8 transforming polynomial functions
2.7 Graphing Absolute Value Functions The absolute value function always makes a ‘V’ shape graph.
Absolute–Value Functions
Graph and transform absolute-value functions.
To remember the difference between vertical and horizontal translations, think: “Add to y, go high.” “Add to x, go left.” Helpful Hint.
Section 3.5 Graphing Techniques: Transformations.
The absolute-value parent function is composed of two linear pieces, one with a slope of –1 and one with a slope of 1. In Lesson 2-6, you transformed linear.
7-7 Warm Up Lesson Presentation Lesson Quiz Transforming Exponential
2.5 Shifting, Reflecting, and Stretching Graphs. Shifting Graphs Digital Lesson.
Transformation of Functions Sec. 1.7 Objective You will learn how to identify and graph transformations.
How does each function compare to its parent function?
Warm Up Give the coordinates of each transformation of (2, –3). 4. reflection across the y-axis (–2, –3) 5. f(x) = 3(x + 5) – 1 6. f(x) = x 2 + 4x Evaluate.
Holt McDougal Algebra 2 Radical Functions Graph radical functions and inequalities. Transform radical functions by changing parameters. Objectives.
Objectives Transform quadratic functions.
1. g(x) = -x g(x) = x 2 – 2 3. g(x)= 2 – 0.2x 4. g(x) = 2|x| – 2 5. g(x) = 2.2(x+ 2) 2 Algebra II 1.
Holt McDougal Algebra 2 Using Transformations to Graph Quadratic Functions If a parabola opens upward, it has a lowest point. If a parabola opens downward,
Section 1.4 Transformations and Operations on Functions.
2.6 Families of Functions Sets of functions, called families, in what each function is a transformation of a special function called the parent. Linear.
1 PRECALCULUS Section 1.6 Graphical Transformations.
Holt McDougal Algebra Exploring Transformations 1-1 Exploring Transformations Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Warm-Up Evaluate each expression for x = -2. 1) (x – 6) 2 4 minutes 2) x ) 7x 2 4) (7x) 2 5) -x 2 6) (-x) 2 7) -3x ) -(3x – 1) 2.
Transforming Linear Functions
Chapter 6 - Polynomial Functions Algebra 2. Table of Contents Fundamental Theorem of Algebra Investigating Graphs of Polynomial Functions.
Transforming Linear Functions
Transformations of Functions
Transformations of Functions
13 Algebra 1 NOTES Unit 13.
Using Transformations to Graph Quadratic Functions 5-1
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Absolute Value Functions
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Objective Graph and transform |Absolute-Value | functions.
Objectives Transform quadratic functions.
3-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Warm-up: Welcome Ticket
Transforming Linear Functions
Objective Transform polynomial functions..
Objectives Transform linear functions.
Transforming Linear Functions
Absolute–Value Functions
Transformations of Functions
Introduction to Parent Functions
LEARNING GOALS FOR LESSON 2.6 Stretches/Compressions
Warm up honors algebra 2 3/1/19
Presentation transcript:

6-8 Transforming Polynomial Functions Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2

Warm Up Let g be the indicated transformation of f(x) = 3x + 1. Write the rule for g. 1. horizontal translation 1 unit right g(x) = 3x – 2 2. vertical stretch by a factor of 2 g(x) = 6x + 2 3. horizontal compression by a factor of 4 g(x) = 12x + 1

Objective Transform polynomial functions.

You can perform the same transformations on polynomial functions that you performed on quadratic and linear functions.

Example 1A: Translating a Polynomial Function For f(x) = x3 – 6, write the rule for each function and sketch its graph. g(x) = f(x) – 2 g(x) = (x3 – 6) – 2 g(x) = x3 – 8 To graph g(x) = f(x) – 2, translate the graph of f(x) 2 units down. This is a vertical translation.

Example 1B: Translating a Polynomial Function For f(x) = x3 – 6, write the rule for each function and sketch its graph. h(x) = f(x + 3) h(x) = (x + 3)3 – 6 To graph h(x) = f(x + 3), translate the graph 3 units to the left. This is a horizontal translation.

Check It Out! Example 1a For f(x) = x3 + 4, write the rule for each function and sketch its graph. g(x) = f(x) – 5 g(x) = (x3 + 4) – 5 g(x) = x3 – 1 To graph g(x) = f(x) – 5, translate the graph of f(x) 5 units down. This is a vertical translation.

Check It Out! Example 1b For f(x) = x3 + 4, write the rule for each function and sketch its graph. g(x) = f(x + 2) g(x) = (x + 2)3 + 4 g(x) = x3 + 6x2 + 12x + 12 To graph g(x) = f(x + 2), translate the graph 2 units left. This is a horizontal translation.

Reflect f(x) across the x-axis. Example 2A: Reflecting Polynomial Functions Let f(x) = x3 + 5x2 – 8x + 1. Write a function g that performs each transformation. Reflect f(x) across the x-axis. g(x) = –f(x) g(x) = –(x3 + 5x2 – 8x + 1) g(x) = –x3 – 5x2 + 8x – 1 Check Graph both functions. The graph appears to be a reflection.

Reflect f(x) across the y-axis. Example 2B: Reflecting Polynomial Functions Let f(x) = x3 + 5x2 – 8x + 1. Write a function g that performs each transformation. Reflect f(x) across the y-axis. g(x) = f(–x) g(x) = (–x)3 + 5(–x)2 – 8(–x) + 1 g(x) = –x3 + 5x2 + 8x + 1 Check Graph both functions. The graph appears to be a reflection.

Reflect f(x) across the x-axis. Check It Out! Example 2a Let f(x) = x3 – 2x2 – x + 2. Write a function g that performs each transformation. Reflect f(x) across the x-axis. g(x) = –f(x) g(x) = –(x3 – 2x2 – x + 2) g(x) = –x3 + 2x2 + x – 2 Check Graph both functions. The graph appears to be a reflection.

Reflect f(x) across the y-axis. Check It Out! Example 2b Let f(x) = x3 – 2x2 – x + 2. Write a function g that performs each transformation. Reflect f(x) across the y-axis. g(x) = f(–x) g(x) = (–x)3 – 2(–x)2 – (–x) + 2 g(x) = –x3 – 2x2 + x + 2 Check Graph both functions. The graph appears to be a reflection.

Example 3A: Compressing and Stretching Polynomial Functions Let f(x) = 2x4 – 6x2 + 1. Graph f and g on the same coordinate plane. Describe g as a transformation of f. g(x) = f(x) 1 2 g(x) = (2x4 – 6x2 + 1) 1 2 g(x) = x4 – 3x2 + 1 2 g(x) is a vertical compression of f(x).

Example 3B: Compressing and Stretching Polynomial Functions Let f(x) = 2x4 – 6x2 + 1. Graph f and g on the same coordinate plane. Describe g as a transformation of f. h(x) = f( x) 1 3 h(x) = 2( x)4 – 6( x)2 + 1 1 3 h(x) = x4 – x2 + 1 2 81 3 g(x) is a horizontal stretch of f(x).

g(x) is a vertical compression of f(x). Check It Out! Example 3a Let f(x) = 16x4 – 24x2 + 4. Graph f and g on the same coordinate plane. Describe g as a transformation of f. 1 4 g(x) = f(x) g(x) = (16x4 – 24x2 + 4) 1 4 g(x) = 4x4 – 6x2 + 1 g(x) is a vertical compression of f(x).

g(x) is a horizontal stretch of f(x). Check It Out! Example 3b Let f(x) = 16x4 – 24x2 + 4. Graph f and g on the same coordinate plane. Describe g as a transformation of f. 1 2 h(x) = f( x) h(x) = 16( x)4 – 24( x)2 + 4 1 2 h(x) = x4 – 3x2 + 4 g(x) is a horizontal stretch of f(x).

Example 4A: Combining Transformations Write a function that transforms f(x) = 6x3 – 3 in each of the following ways. Support your solution by using a graphing calculator. Compress vertically by a factor of , and shift 2 units right. 1 3 g(x) = f(x – 2) 1 3 g(x) = (6(x – 2)3 – 3) 1 3 g(x) = 2(x – 2)3 – 1

Example 4B: Combining Transformations Write a function that transforms f(x) = 6x3 – 3 in each of the following ways. Support your solution by using a graphing calculator. Reflect across the y-axis and shift 2 units down. g(x) = f(–x) – 2 g(x) = (6(–x)3 – 3) – 2 g(x) = –6x3 – 5

Check It Out! Example 4a Write a function that transforms f(x) = 8x3 – 2 in each of the following ways. Support your solution by using a graphing calculator. Compress vertically by a factor of , and move the x-intercept 3 units right. 1 2 g(x) = f(x – 3) 1 2 g(x) = (8(x – 3)3 – 2 1 2 g(x) = 4(x – 3)3 – 1 g(x) = 4x3 – 36x2 + 108x – 1

Check It Out! Example 4b Write a function that transforms f(x) = 6x3 – 3 in each of the following ways. Support your solution by using a graphing calculator. Reflect across the x-axis and move the x-intercept 4 units left. g(x) = –f(x + 4) g(x) = –6(x + 4)3 – 3 g(x) = –8x3 – 96x2 – 384x – 510

Example 5: Consumer Application The number of skateboards sold per month can be modeled by f(x) = 0.1x3 + 0.2x2 + 0.3x + 130, where x represents the number of months since May. Let g(x) = f(x) + 20. Find the rule for g and explain the meaning of the transformation in terms of monthly skateboard sales. Step 1 Write the new rule. The new rule is g(x) = f(x) + 20 g(x) = 0.1x3 + 0.2x2 + 0.3x + 130 + 20 g(x) = 0.1x3 + 0.2x2 + 0.3x + 150 Step 2 Interpret the transformation. The transformation represents a vertical shift 20 units up, which corresponds to an increase in sales of 20 skateboards per month.

g(x) = 0.01(x – 5)3 + 0.7(x – 5)2 + 0.4(x – 5) + 120 Check It Out! Example 5 The number of bicycles sold per month can be modeled by f(x) = 0.01x3 + 0.7x2 + 0.4x + 120, where x represents the number of months since January. Let g(x) = f(x – 5). Find the rule for g and explain the meaning of the transformation in terms of monthly skateboard sales. Step 1 Write the new rule. The new rule is g(x) = f(x – 5). g(x) = 0.01(x – 5)3 + 0.7(x – 5)2 + 0.4(x – 5) + 120 g(x) = 0.01x3 + 0.55x2 – 5.85x + 134.25 Step 2 Interpret the transformation. The transformation represents the number of sales since March.

Lesson Quiz: Part I 1. For f(x) = x3 + 5, write the rule for g(x) = f(x – 1) – 2 and sketch its graph. g(x) = (x – 1)3 + 3

Lesson Quiz: Part II 2. Write a function that reflects f(x) = 2x3 + 1 across the x-axis and shifts it 3 units down. h(x) = –2x3 – 4 3. The number of videos sold per month can be modeled by f(x) = 0.02x3 + 0.6x2 + 0.2x + 125, where x represents the number of months since July. Let g(x) = f(x) – 15. Find the rule for g and explain the meaning of the transformation in terms of monthly video sales. 0.02x3 + 0.6x2 + 0.2x + 110; vertical shift 15 units down; decrease of 15 units per month