Sketching y = a sin bx and y = a cos bx

Slides:



Advertisements
Similar presentations
Sketching y = a sin bx and y = a cos bx
Advertisements

Circle Theorems Bingo!. Use any 9 of these numbers 105 o 240 o 55 o 14 o 65 o 50 o 90 o 45 o 60 o 40 o 110 o 155 o 15 o 74 o 120 o 12 o.
extended learning for chapter 11 (graphs)
Name: Date: Read temperatures on a thermometer Independent / Some adult support / A lot of adult support
Whiteboardmaths.com © 2004 All rights reserved
(r, ).
Graphs of Trigonometric Functions
(r, ).
Presents Mathematics Department Graphs of Sine, Cosine and Tangent The combined graphs Summary Solving trigonometric equations Menu.
© 2000 Jeff B. Pelz. Fourier Synthesis Sinusoidal Functions as Building Blocks for Spatial Vision.
Changing from Sine to Cosine
TUNING SHU RANGE 4 NM ASTERNAHEAD COURSE 350T PLOTTING GUARDSPEED 5 KTS START EXIT TUTORIALS COURSE 350T.
Copyright © 2009 Pearson Addison-Wesley Applications of Trigonometry.
Slide 6-1 COMPLEX NUMBERS AND POLAR COORDINATES 8.1 Complex Numbers 8.2 Trigonometric Form for Complex Numbers Chapter 8.
Roots of a complex number
Chapter 7 Review.
Int 2 Graphs of the form y = a sin xo Graphs of the form y = a sin bxo
HW 9 P (19-21, even, 56, 57, 66, even) P100 (12-22 even, 19)
THE UNIT CIRCLE Reference Angles And Trigonometry.
Trigonometric Functions and Graphs
Trigonometric Graphs Click to continue..
Trigonometry.
Chapter 6 Equations 6.1 Solving Trigonometric Equations 6.2 More on Trigonometric Equations 6.3 Trigonometric Equations Involving Multiples Angles 6.4.
Trigonometric Functions of Any Angle
Fractions Simplify: 36/48 = 36/48 = ¾ 125/225 = 125/225 = 25/45 = 5/9
13-3 The Unit Circle Warm Up Lesson Presentation Lesson Quiz
The Unit Circle PreCalculus.
THE UNIT CIRCLE 6.1 Let’s take notes and fill out the Blank Unit Circle as we go along.
Chapter 6: Trigonometry 6
1 Euler construction Spherical C 1 C 2 C 3 formed by pts where axes intersect sphere cos w = cos u cos v + sin u sin v cos W u = U v = V w.
0 x x2 0 0 x1 0 0 x3 0 1 x7 7 2 x0 0 9 x0 0.
13.6 – The Tangent Function. The Tangent Function Use a calculator to find the sine and cosine of each value of . Then calculate the ratio. 1. radians2.30.
4.5 Graphs of Sine and Cosine Functions
4.5 Sinusoidal Graphs Sketching and Writing Equations.
4-4 Graphing Sine and Cosine
Graphs Transformation of Sine and Cosine
Aim: What is the transformation of trig functions? Do Now: HW: Handout Graph: y = 2 sin x and y = 2 sin x + 1, 0 ≤ x ≤ 2π on the same set of axes.
Graphs of Sine and Cosine Five Point Method. 2 Plan for the Day Review Homework –4.5 P odd, all The effects of “b” and “c” together in.
Graphs of Trig Functions
Trigonometric Functions
Aim: What’s the a in y = a sin x all about?
Aim: How do we sketch y = A(sin Bx) and
Trigonometric Functions
Chapter 4.4 Graphs of Sine and Cosine: Sinusoids Learning Target: Learning Target: I can generate the graphs of the sine and cosine functions along with.
Section 8-2 Sine and Cosine Curves. Recall… The Sine Graph.
Section 5.3 Trigonometric Graphs
Basic Graphs of Sine and Cosine Functions 4.1 JMerrill, 2009 (contributions by DDillon)
6.4 Amplitude and Period of Sine and Cosine Functions.
Chp. 4.5 Graphs of Sine and Cosine Functions p. 323.
13.5 – The Cosine Function.
3) 0.96) –0.99) –3/412) –0.6 15) 2 cycles; a = 2; Period = π 18) y = 4 sin (½x) 21) y = 1.5 sin (120x) 24) 27) 30) Period = π; y = 2.5 sin(2x) 33) Period.
Graphs of Trigonometric Functions. Properties of Sine and Cosine Functions 2 6. The cycle repeats itself indefinitely in both directions of the x-axis.
Chapter 6 Section 6.4 Translations of the Graphs of Sine and Cosine Functions.
UNIT 6: GRAPHING TRIG AND LAWS Final Exam Review.
Notes Over 14.1 Graph Sine, Cosine, and Tangent Functions.
Properties of Sine and Cosine Functions
Trigonometric Graphs 6.2.
Transformations of the Graphs of Sine and Cosine Functions
2.7 Sinusoidal Graphs; Curve Fitting
Transformations of the Graphs of Sine and Cosine Functions
Trigonometric Graphs 1.6 Day 1.
Amplitude, Period, and Phase Shift
Graphs of Trigonometric Functions
Notes Over 6.4 Graph Sine, Cosine Functions.
Graphs of Trigonometric Functions
4.4 Graphs of Sine and Cosine Functions
Graphing: Sine and Cosine
8.3 – Model Periodic Behavior
7.3 Periodic Graphs & Amplitude Objectives:
Trigonometric Functions
Presentation transcript:

Sketching y = a sin bx and y = a cos bx

y = sin x y = cos x x 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360 sin x .5 .71 .87 1 –.5 –.71 –.87 –1 90 180 270 360 1 –1 0.5 –0.5 45 135 225 315 y = cos x x 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360 cos x 1 .87 .71 .5 –.5 –.71 –.87 –1 90 180 270 360 1 –1 0.5 –0.5 45 135 225 315

y = sin x y = cos x x –2 –3/2 – –/2 /2  3/2 2 5/2 3 7/2 4 /2  3/2 2 5/2 3 7/2 4 sin x 1 –1 1 y = sin x and y = cos x are called periodic functions because of the repeating cycles. For sine, it’s For cosine, it’s: – –3/2 – –/2 /2  3/2 2 5/2 3 7/2 4 –1 y = cos x x –2 –3/2 – –/2 /2  3/2 2 5/2 3 7/2 4 cos x 1 –1 1 –2 –3/2 – –/2 /2  3/2 2 5/2 3 7/2 4 –1

y = –sin x  Reflect y = sin x over the x-axis /2  3/2 2 sin x 1 –1 x /2  3/2 2 –sin x –1 1 1 1 /2  3/2 2 /2  3/2 2 –1 –1 y = cos x y = –cos x  Reflect y = cos x over the x-axis x /2  3/2 2 cos x 1 –1 x /2  3/2 2 –cos x –1 1 1 1 /2  3/2 2 /2  3/2 2 –1 –1

Sketching y = a sin x y = 2 sin x y = ½ sin x y = –3 sin x /2  3/2 2 sin x 1 –1 2 sin x 2 –2 x /2  3/2 2 sin x 1 –1 ½ sin x 1/2 –1/2 x /2  3/2 2 sin x 1 –1 –3sinx –3 3 2 1 3 y = 2 sin x y = ½ sin x 1 ½ y = sin x /2  3/2 2 /2  3/2 2 /2  3/2 2 –1 –½ –2 –1 –3 Sketching y = a cos x y = –2 cos x y = ¾ cos x y = –4 cos x x /2  3/2 2 cos x 1 –1 –2 cos x –2 2 x /2  3/2 2 cos x 1 –1 ¾ cos x ¾ –¾ x /2  3/2 2 cos x 1 –1 –4 cos x –4 4 2 y = –2 cos x 4 y = –4 cos x ¾ 1 y = –cos x /2  3/2 2 /2  3/2 2 /2  3/2 2 –1 –¾ y = ¾ cos x –2 –4

To be replaced by Ryder 1

Sketching y = a sin bx and y = a cos bx: |a| = amplitude = ½(ymax – ymin) i.e., the “height” from the middle to the top |b| = frequency = number of cycles in 2 units P = period = the least number of positive units it takes to complete one cycle = 2/|b| Plot the two functions f(x) and g(x) on the same graph on 0  x  2. For each function, identify the amplitude, frequency, period and answer the number of times they intersect. f(x) = 2 cos (3x) Amplitude: 2 Frequency: 3 Period: 2/3 g(x) = –2 sin (¾x) Amplitude: 2 Frequency: 3/4 Period: 2/(¾) = 8/3 2 1 2 3 –1 –2 –3 g(x) = –2 sin (¾x) f(x) = 2 cos (3x) How many times do they intersect on the interval [0, 2]? 6 times Give a solution for the equation 2 cos (3x) = –2 sin (¾x) on [0, 2]: 2