Introduction to Derivatives

Slides:



Advertisements
Similar presentations
Differential calculus
Advertisements

3.1 Derivative of a Function

Page 6 As we can see, the formula is really the same as the formula. So, Furthermore, if an equation of the tangent line at (a, f(a)) can be written as:
Introduction to Derivatives—The Concept of a Tangent Line
Section I The Basics.

Tangent Lines Section 2.1.
Derivatives A Physics 100 Tutorial.
2.6 The Derivative By Dr. Julia Arnold
Graphs of Other Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
The Derivative.
Copyright © Cengage Learning. All rights reserved.
2.1 Derivatives and Rates of Change. The slope of a line is given by: The slope of the tangent to f(x)=x 2 at (1,1) can be approximated by the slope of.
Tangent Lines Section 2.1.
Aim: What do slope, tangent and the derivative have to do with each other? Do Now: What is the equation of the line tangent to the circle at point (7,
Equations of Tangent Lines
Limits and an Introduction to Calculus
Limits Pre-Calculus Calculus.
Copyright © 2011 Pearson Education, Inc. Slide Tangent Lines and Derivatives A tangent line just touches a curve at a single point, without.
Tangent lines Recall: tangent line is the limit of secant line The tangent line to the curve y=f(x) at the point P(a,f(a)) is the line through P with slope.
Rate of change and tangent lines
10 Conics, Parametric Equations, and Polar Coordinates
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Section 2.1 – The Derivative and the Tangent Line Problem
The Derivative Chapter 3:. What is a derivative? A mathematical tool for studying the rate at which one quantity changes relative to another.
Derivatives in physics. Why Do We Need Derivatives? In physics things are constantly changing. Specifically, what we’ll be interested with is how physical.
DERIVATIVES The second day of classes we looked at two situations whose resolution brought us to the same mathematical set-up: Tangents and Velocities.
Copyright © Cengage Learning. All rights reserved.
The Derivative. Objectives Students will be able to Use the “Newton’s Quotient and limits” process to calculate the derivative of a function. Determine.
HWQ 1/12/15 Evaluate the definite integral: No calculator please.
Copyright © Cengage Learning. All rights reserved.
The Secant-Line Calculation of the Derivative
CHAPTER 5 SECTION 5.3 INVERSE FUNCTIONS
CHAPTER Continuity Derivatives Definition The derivative of a function f at a number a denoted by f’(a), is f’(a) = lim h  0 ( f(a + h) – f(a))
Chapter 3 Introduction to the Derivative Sections 3. 5, 3. 6, 4
Mean Value Theorem for Derivatives.
3.2 Continuity JMerrill, 2009 Review 3.1 Find: Direct substitution causes division by zero. Factoring is not possible, so what are you going to do?
The derivative of a function f at a fixed number a is In this lesson we let the number a vary. If we replace a in the equation by a variable x, we get.
Copyright © Cengage Learning. All rights reserved. 3 Introduction to the Derivative.
The Slope of a Curve or How Secant Lines become Tangent Lines.
Unit 1 Limits. Slide Limits Limit – Assume that a function f(x) is defined for all x near c (in some open interval containing c) but not necessarily.
1.6 – Tangent Lines and Slopes Slope of Secant Line Slope of Tangent Line Equation of Tangent Line Equation of Normal Line Slope of Tangent =
MATH 31 LESSONS Chapter 1: Limits 1. Linear Functions and Tangents.
Copyright © Cengage Learning. All rights reserved. 12 Limits and an Introduction to Calculus.
Chapter Two: Section One The Derivative and the Tangent Line Problem.
3.1 Definition of the Derivative & Graphing the Derivative
Finding the Derivative The Limit Process. What is the derivative of something? The derivative of a function f(x) is, mathematically speaking, the slope.
EXAMPLE 1 Find a positive slope Let (x 1, y 1 ) = (–4, 2) = (x 2, y 2 ) = (2, 6). m = y 2 – y 1 x 2 – x 1 6 – 2 2 – (–4) = = = Simplify. Substitute.
2.1 The Derivative and The Tangent Line Problem Slope of a Tangent Line.
Unit 2 Calculating Derivatives From first principles!
Limits (10/14/11) Question: How can we compute the slope of the tangent line to the curve y = x 2 at the point (1, 1)? Possible approach: Compute the slope.
Rates of Change and Tangent Lines Devil’s Tower, Wyoming.
Section 4.4 The Fundamental Theorem of Calculus. We have two MAJOR ideas to examine in this section of the text. We have been hinting for awhile, sometimes.
Calculus Section 3.1 Calculate the derivative of a function using the limit definition Recall: The slope of a line is given by the formula m = y 2 – y.
Calculating Derivatives From first principles!. 2.1 The Derivative as a Limit See the gsp demo demodemo Let P be any point on the graph of the function.
Hypothesis: Conclusion:
The Product and Quotient Rules
Rates of Change and Tangent Lines
Ch. 11 – Limits and an Introduction to Calculus
3.1 – Derivative of a Function
3.1 – Derivative of a Function
Derivatives by Definition
Tangent line to a curve Definition: line that passes through a given point and has a slope that is the same as the.
Tangent line to a curve Definition: line that passes through a given point and has a slope that is the same as the.
Section 2.7.
Tangent Line Recall from geometry
4. THE DERIVATIVE (NPD).
What is a limit?.
Presentation transcript:

Introduction to Derivatives y Tangent line at (c, f(c)) Secant line between (a, f(a)) and (c, f(c)) (a, f(a)) Definitions (informal): 1. A secant line is a line connecting two points of a curve. 2. A tangent line at a point of a curve is a line that only touches that point of the curve, locally speaking. (c, f(c)) x y = f(x) We can always calculate the slope between two points (recall ). Therefore, we can always calculate the slope of a secant line because it connects two points of the curve. For example the slope of the secant line shown above is m = . On the other hand, we can’t find the slope of the tangent line since even though it also touches two points of the curve, only (c, f(c)) is given, the other one is not! Let alone those tangent lines that really touch exactly one point of the curve (see diagram on the right)! Can we find the slope of the tangent line at a point given that we don’t know any other points? The answer is YES. This is when we need to use the idea called limiting process—to find the slope of a tangent line at a given point (c, f(c)) of a function, we can find the slope between the fixed point (c, f(c)) and some movable point, say, (x, f(x)). As (x, f(x)) moving closer and closer to (c, f(c)), we calculate the slopes of the secant lines between (c, f(c)) and (x, f(x)), and see what the limit is, i.e., what the values of the slopes of the secant lines are getting closer to? msec (x, f(x)) (c, f(c)) mtan

y –6 –4 –2 x O 2 4 6 8 10 –8 12 14 16 Let (1, 1) be fixed and let the other points vary, what are slopes of the following secant lines: Shown: Between (4, 16) and (1, 1): Between (3, 9) and (1, 1): Between (2, 4) and (1, 1): Between (0, 0) and (1, 1): Not Shown: Between (1.1, 1.21) and (1, 1): Between (1.01, 1.0201) and (1, 1): Conclusion: The slope of the tangent line must be: What is the equation of the tangent line at (1, 1)? (Hint: use y – y1 = m(x – x1)) y = x2 (1, 1) y –6 –4 –2 x O 2 4 6 8 10 –8 12 14 16 y = x2 (2, 4) Now, let (2, 4) be fixed and let the other points vary, what are slopes of the following secant lines: Shown: Between (4, 16) and (2, 4): Between (3, 9) and (2, 4): Between (1, 1) and (2, 4): Between (0, 0) and (2, 4): Not Shown: Between (2.1, 4.41) and (2, 4): Between (2.01, 4.0401) and (2, 4): Conclusion: The slope of the tangent line at (2, 4) must be: What is the equation of the tangent line at (2, 4)?

provided that this limit exists. Definition (Formal): The tangent line to the graph of a function y = f(x) at a point P = (c, f(c)) is defined as the line containing the point P whose slope is provided that this limit exists. If mtan exists, an equation of the tangent line at (c, f(c)), by the point-slope form (i.e., y – y1 = m(x – x1)), is y – f(c) = mtan(x – c) Therefore, without calculating the slopes of the secant lines of the points near (2, 4), we can just use: where, in this case, f(x) = x2, c = 2, and f(c)) = 4. msec (x, f(x)) (c, f(c)) mtan y –6 –4 –2 x O 2 4 6 8 10 –8 12 14 16 y = x2 (2, 4)

Provided that this limit exists. y –4 –8 2 4 6 8 10 y = x3 (1, 1) –6 –2 x O Let (1, 1) be fixed and let the other points vary, what are slopes of the following secant lines: Shown: Between (2, 8) and (1, 1): Between (0, 0) and (1, 1): Not Shown: Between (1.1, 1.331) and (1, 1): Between (1.01, 1.030301) and (1, 1): Conclusion: The slope of the tangent line must be: What is the equation of the tangent line at (1, 1)? (Hint: use y – y1 = m(x – x1)) Using the definition: Q: What does this have to do with derivative? A: What we did is the derivative of the function at the point! Definition: The Derivative of a Function f at a Number c: Let y = f(x) denote a function f, and if a real number c is in the domain of f, the derivative of f at c. denoted by f(c), read as “f prime of c,” is defined as Provided that this limit exists.

As we can see, the formula is really the same as the formula . So, Furthermore, if an equation of the tangent line at (c, f(c)) can be written as: y – f(c) = mtan(x – c) it can be written as: How to find the derivative of a function f at c, i.e., f(c)? Example: If f(x) = x2 + 2x – 4, find f(3). Step 1: Find f(c) if it’s not given. Step 2: Use . Step 3: Find the limit: Whatever you obtain in step 3 is f(c). Note: when you try to find the , it will be a [0/0] indeterminate form, in almost every case. Examples: Find the derivative at the indicated x-value or at the indicated point. 1. f(x) = x2 + 2 at x = –1 2. f(x) = x2 – 3 at (2, 1) mtan =

Step 0: Find f(c) if it’s not given. How to find an equation of the tangent line of a function f(x) at a given x-value c or a given point (c, f(c))? Step 0: Find f(c) if it’s not given. Step 1: Find the slope of the tangent line using the formula Step 2: Use point-slope form of a line y – y1 = m(x – x1) by substituting c into x1, f(c) into y1 and f (c) into m. Examples: Find an equation of the tangent line of the given function at the x-value or at the given point. 1. f(x) = 2x2 + x – 2 at x = 1 2. f(x) = x3 – 2 at (2, 6) Determining whether the derivative of f at a number should be positive, negative or zero when a graph is given: When we are given a graph, we know that to determine whether a function value f(c) is positive, negative, or zero, all we need to do is to ask whether the point (c, f(c)) is above, below or on the x-axis, respectively. For example, f(–3) is positive because the point (–3, f(–3)) is above the x-axis; f(4) is negative because the point (4, f(4)) is below the x-axis, f(7) is zero because the point (7, f(7)) is on the x-axis. –1 –2 –3 1 2 3 4 5 6 7 However, to determine the derivative of f at a number c, i.e., f (c), is positive, negative, or zero, we need to ask ourselves this question: If we can construct a tangent line at (c, f(c)), what is the slope of this tangent line? For example, if we construct a tangent line at (–3, f(–3)), what is the slope—positive, negative, or zero? Obviously it’s positive! Therefore, f (–3) is positive. Determine whether the following derivatives are positive (+), negative (–) or zero (0): f (–3) = (+) f (–1) = ___ f (1) = ___ f (3) = ___ f (4) = ___ f (7) = ___