Page 44 What does the 1 st derivative of a function tell us about the graph of the function? It tells us __________________________________________________________.

Slides:



Advertisements
Similar presentations
I can sketch the graph of f given the graph of f’
Advertisements

Business Calculus Extrema. Extrema: Basic Facts Two facts about the graph of a function will help us in seeing where extrema may occur. 1.The intervals.
First Derivative Test, Concavity, Points of Inflection Section 4.3a.
5.4 Curve Sketching. Slide Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison- Wesley Example 1: Graph the function f given.
Concavity and the Second Derivative Test
1 Concavity and the Second Derivative Test Section 3.4.
4.3 Derivatives and the shapes of graphs 4.4 Curve Sketching
Objectives: 1.Be able to determine where a function is concave upward or concave downward with the use of calculus. 2.Be able to apply the second derivative.
What does say about f ? Increasing/decreasing test
Sec 3.4: Concavity and the Second Derivative Test
Business Calculus Graphing.  2.1 & 2.2 Graphing: Polynomials and Radicals Facts about graphs: 1.Polynomials are smooth and continuous. 2.Radicals are.
3.2 The Second-Derivative Test 1 What does the sign of the second derivative tell us about the graph? Suppose the second derivative is positive. But, is.
Section 4.1 Using First and Second Derivatives. Let’s see what we remember about derivatives of a function and its graph –If f’ > 0 on an interval than.
4.3 How Derivatives Affect the Shape of a Graph. Facts If f ’( x ) > 0 on an interval ( a,b ), then f (x) is increasing on ( a,b ). If f ’( x ) < 0 on.
Section 4.3b. Do Now: #30 on p.204 (solve graphically) (a) Local Maximum at (b) Local Minimum at (c) Points of Inflection:
AP/Honors Calculus Chapter 4 Applications of Derivatives Chapter 4 Applications of Derivatives.
Graphing. 1. Domain 2. Intercepts 3. Asymptotes 4. Symmetry 5. First Derivative 6. Second Derivative 7. Graph.
Graphing Quadratic Functions (2.1.1) October 1st, 2015.
Using Derivatives to Sketch the Graph of a Function Lesson 4.3.
In the past, one of the important uses of derivatives was as an aid in curve sketching. We usually use a calculator of computer to draw complicated graphs,
CONCAVITY AND SECOND DERIVATIVE RIZZI – CALC BC. WARM UP Given derivative graph below, find a. intervals where the original function is increasing b.
Copyright © 2016, 2012 Pearson Education, Inc
Definition of Curve Sketching  Curve Sketching is the process of using the first and second derivative and information gathered from the original equation.
Chapter Four Applications of Differentiation. Copyright © Houghton Mifflin Company. All rights reserved. 4 | 2 Definition of Extrema.
Ch. 5 – Applications of Derivatives
SECT 3-8B RELATING GRAPHS Handout: Relating Graphs.
4.6 Curve Sketching Fri Oct 23 Do Now Find intervals of increase/decrease, local max and mins, intervals of concavity, and inflection points of.
Curve Sketching. Objective To analyze and sketch an accurate graph of a function. To analyze and sketch an accurate graph of a function.
CHAPTER 3 SECTION 3.4 CONCAVITY AND THE SECOND DERIVATIVE TEST.
CURVE SKETCHING The first application of derivatives we will study is using derivatives to determine the shape of the graph of a function. We will use.
§3.4 Concavity Concave Up Concave Down Inflection Points Concavity Changes Concave Up Concave Down.
Sketching Functions We are now going to use the concepts in the previous sections to sketch a function, find all max and min ( relative and absolute ),
4. Concavity and the 2 nd Derivative Test. Concavity If we know that a function has a positive derivative over an interval, we know the graph is increasing,
What does say about f ? Increasing/decreasing test
Ch. 5 – Applications of Derivatives
Relative Extrema and More Analysis of Functions
Graphing.
Extreme Values of Functions
4.3 Derivatives and the shapes of graphs 4.5 Curve Sketching
Summary Curve Sketching
Guidelines for sketching the graph of a function
Increasing and Decreasing Functions and the First Derivative Test
Applications of the Derivative
Concavity and the Second Derivative Test
Warm Up Chapter 3.4 Concavity and the Second Derivative Test
3.6 Summary of Curve Sketching *pass out chart!
Concavity and Second Derivative Test
3. Increasing, Decreasing, and the 1st derivative test
3.2 – Concavity and Points of Inflection
Second Derivative Test
A Summary of Curve Sketching
Application of Derivative in Analyzing the Properties of Functions
Sec 4.5: Curve Sketching Asymptotes Horizontal Vertical
Sec 3.4: Concavity and the Second Derivative Test
For each table, decide if y’is positive or negative and if y’’ is positive or negative
4.3 1st & 2nd Derivative Tests
5.4 Curve Sketching.
Critical Points and Extrema
Concavity and the Second Derivative Test
More Properties of Functions
4.3 Connecting f’ and f’’ with the graph of f
Concavity and the Second Derivative Test
For each table, decide if y’is positive or negative and if y’’ is positive or negative
5. Curve Sketching.
Warm Up Cinco Chapter 3.4 Concavity and the Second Derivative Test
Derivatives and Graphing
Warm Up Chapter 3.4 Concavity and the Second Derivative Test
Warm Up Chapter 3.4 Concavity and the Second Derivative Test
Concavity & the 2nd Derivative Test
- Derivatives and the shapes of graphs - Curve Sketching
Presentation transcript:

Page 44 What does the 1 st derivative of a function tell us about the graph of the function? It tells us __________________________________________________________ What does the 2 nd derivative of a function tell us about the graph of the function? It tells us __________________________________________________________ Therefore, to sketch the graph of a function, f(x), we should, For where the function f(x) is increasing/decreasing and attains its local extrema: 1.Find the 1 st derivative, f (x). 2.Find the x-values such that f (x) = 0, and sometimes, also find the x-values such that f (x) doesnt exist. * 3.Determine the intervals for which f is increasing and decreasing, determine the locations of its local extrema, if any. For where the function f(x) is concave up/concave down and attains its inflection points: 1. Find the 2 nd derivative, f (x). 2. Find the x-values such that f (x) = 0, and sometimes, also find the x-values such that f (x) doesnt exist. 3. Determine the intervals for which f is _______________________________________________________________ Example: f(x) = 1 / 3 x 3 + x 2 – 8x + 5 Sketching the Graph of a Function Using Its 1st and 2nd Derivatives Intervals(, ) x f (x) Inc/Dec? Graph Intervals(, ) x f (x) CU/CD? Graph *Definition: A critical number of a function f is a number c in the domain of f such that either f (c) = 0 or f (c) doesnt exist.

Page 45 If a function is not a constant function, then it will increase and/or _____________. If it is not a linear function, it will be concave up and/or __________. If so, the graph of the function can only consist of one or more of the following 4 pieces: Example: f(x) = x 4 – x 2 – 2x – 1 (Note: The only critical number from f (x) is x = 1.) Inc and CUDec and ________ and ____Dec and CD Sketching the Graph of a Function (contd) Intervals( ) x f (x) Inc/Dec? f (x) CU/CD? Graph f at Key Numbers Max/Min/Inf

Page 46 When sketching the graph of a function, f(x), besides considering increasing/decreasing and concavity (i.e., concave up/concave down), we also need to considering following: A. Domain: determine all possible values of x B. Intercepts: y-intercept (by plug __ into f(x)) and x-intercept(s) (by setting f(x) = __ and solve for x) * C. Symmetry: determine whether it is symmetric with respect to (wrt) the ______ or wrt the ______ (see below.) D. Asymptotes: determine whether there is any _______ and/or ______ asymptotes (see below.) * Only when the x-intercepts are manageable to find. Of course, for where f(x) is increasing/decreasing (incl. local extrema) and concavity (incl. inflection points), we have to find the following: E. Intervals of Increase/Decrease: Use the I/D Test: f (x) > 0 increasing and _________ __________ F. Local Maximum/Minimum: Find the x-values where f (x) = 0 or f (x) doesnt exist. f will likely have local extrema at these x-values (but not a must). G. Concavity and Inflection Points: Use the Concavity Test: f (x) > 0 concave up and ______ _____. Find the x-values where f (x) = 0 or f (x) doesnt exist. f will likely have inflection points at these x-values (but not a must). When you have all these components, H. Sketch the function. General Techniques/Considerations When Sketching a Function C. SymmetryD. Asymptotes

Page 47 Ex 1. f(x) = (x 2 – 4)/(x 2 + 1) A. Domain: B. Intercepts: C. Symmetry: D. Asymptotes: E. Intervals of Increase/Decrease: F. Local Maximum/Minimum: G. Concavity and Inflection Points: H. Sketch the function Sketch a Function Using A-H (from the Previous Page) Intervals( ) x f (x) Inc/Dec? f (x) CU/CD? Graph f at Key Numbers Max/Min/Inf/VA

Page 48 Ex 1. f(x) = x/(x 2 – 4) A. Domain: B. Intercepts: C. Symmetry: D. Asymptotes: E. Intervals of Increase/Decrease: F. Local Maximum/Minimum: G. Concavity and Inflection Points: H. Sketch the function Sketch a Function Using A-H Intervals( ) x f (x) Inc/Dec? f (x) CU/CD? Graph f at Key Numbers Max/Min/Inf/VA