Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Thur 3/8/12: 0.HAND IN HW3 again! 1.E(X+Y) example corrected. 2.Random.

Slides:



Advertisements
Similar presentations
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot.
Advertisements

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Zelda, continued. 2.Difficult homework 3 problem. 3.WSOP 2013 hand.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Savage/Tyler, Kaplan/Gazes 2.P(flop a full house) 3.Bernoulli random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms. 2.Hellmuth/Gold. 3.Poisson. 4.Continuous distributions.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review of random walks. 2.Ballot theorem. 3.P( avoiding zero )
CSE115/ENGR160 Discrete Mathematics 04/17/12
Lecture II.  Using the example from Birenens Chapter 1: Assume we are interested in the game Texas lotto (similar to Florida lotto).  In this game,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Ly vs Negreanu. 2.Flush draws and straight draws 3.Project B teams.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Counting. Techniques for counting Rule 1 Suppose we carry out have a sets A 1, A 2, A 3, … and that any pair are mutually exclusive (i.e. A 1  A 2 =
Basic Counting. This Lecture We will study some basic rules for counting. Sum rule, product rule, generalized product rule Permutations, combinations.
Lecture 8—Probability and Statistics (Ch. 3) Friday January 25 th Quiz on Chapter 2 Classical and statistical probability The axioms of probability theory.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterm. 2.Review of Bernoulli and binomial random variables. 3.Geometric.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(cards til 2 nd king). 2.Negative binomial. 3.Rainbow flops examples,
Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Binomial Coefficients, Inclusion-exclusion principle
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Outline for the day: 1.Discuss handout / get new handout. 2.Teams 3.Example projects 4.Expected value 5.Pot odds calculations 6.Hansen / Negreanu 7.P(4.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW3 2.Project B teams 3.Gold vs. Helmuth 4.Farha vs. Gold 5.Flush.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Fred Savage hand. 2.Random walks, continued, for 7.14.
Some other set notation We will use the notation to mean that e is an element of A. We will use the notation to mean that e is not an element of A.
Stat 13, Thu 4/19/ Hand in HW2! 1. Resistance. 2. n-1 in sample sd formula, and parameters and statistics. 3. Probability basic terminology. 4. Probability.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(X+Y) = E(X) + E(Y) examples. 2.CLT examples. 3.Lucky poker. 4.Farha.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW4 notes. 2.Law of Large Numbers (LLN). 3.Central Limit Theorem.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.PDFs and CDFs, for Random walks, ch 7.6. Reflection principle,
(Day 14 was review. Day 15 was the midterm.) Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Return and review.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Axioms.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value. 2.Heads up with AA. 3.Heads up with Gus vs.
Chance We will base on the frequency theory to study chances (or probability).
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratio example again. 2.Random variables. 3.cdf, pmf, and density,
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
1.3 The Borda Count Method.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Let’s say we have a town of 10,000 people electing a mayor using the Plurality with Elimination Voting Method. There are 4 candidates, candidate A, candidate.
Basic Counting.
Classwork: p.33 (27abc run off, 29ab run off, 31, 33ab run off)
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Thur 3/8/12: 0.HAND IN HW3 again! 1.E(X+Y) example corrected. 2.Random walks, ch 7.6. Reflection principle, ballot theorem, and avoiding 0. 3.Hellmuth and Farha. 4.Chip proportions and induction. Read ch7. Also, read pages on optimal play, though it’s not on the final. Homework 4, Stat 35, due Thu March 15, 12:30pm: 6.12, 7.2, 7.8, Project B is due this Fri, March 9, 8pm, by . Many questions on the final will be similar to midterm questions, so go over the midterm questions you missed. Ignore the extra-credit on the midterm, though.

0. HAND IN HW3 again. 1. E(X+Y+Z) example again. Deal til the 2nd king. X = # of cards til the 2nd king. E(X)? Consider any ordering of the deck. e.g. 7 ,Q ,J u,2 , 9 ,K ,3 ,9 ,7 ,A , K ,… For any such ordering, there is another with the cards before the first king exchanged with the cards between the 1st king and the 2nd king. Similarly, for the cards between the 2nd king and 3rd king, and for the cards between the 3rd king and 4th king, and between the 4th king and the end of the deck. So, P(# of cards before 1st king = 5) = P(# of cards bet. 1st and 2nd king = 5), etc. Therefore if X 1 = the # of cards before the 1st king, and X 1 = # of cards between 1st and 2nd king, then E(X 1 ) = ∑ k k P(X 1 =k) = ∑ k k P(X 2 =k) = E(X 2 ). And, X 1 + X 2 + X 3 + X 4 + X 5 = 48, so EX 1 + EX 2 + EX 3 + EX 4 + EX 5 = 48, so E(X 1 ) = E(X 2 ) = E(X 3 ) = E(X 4 ) = E(X 5 ) = 48/5 = 9.6 We want E(X 1 + X 2 + 2) = E(X 1 ) + E(X 2 ) + 2 = 21.2.

2. Random walks, ch 7.6. Suppose that X 1, X 2, …, are iid, and S k = X 0 + X 1 + … + X k for k = 0, 1, 2, …. The totals {S 0, S 1, S 2, …} form a random walk. The classical (simple) case is when each X i is 1 or -1 with probability ½ each. Reflection principle: The number of paths from (0,X 0 ) to (n,y) that touch the x-axis = the number of paths from (0,-X 0 ) to (n,y), for any n,y, and X 0 > 0. Ballot theorem: In n = a+b hands, if player A won a hands and B won b hands, where a>b, and if the hands are aired in random order, P(A won more hands than B throughout the telecast) = (a-b)/n. [In an election, if candidate X gets x votes, and candidate Y gets y votes, where x > y, then the probability that X always leads Y throughout the counting is (x-y) / (x+y).] For a simple random walk, P(S 1 ≠ 0, S 2 ≠ 0, …, S n ≠ 0) = P(S n = 0), for any even n.

Reflection principle: The number of paths from (0,X 0 ) to (n,y) that touch the x-axis = the number of paths from (0,-X 0 ) to (n,y), for any n,y, and X 0 > 0. For each path from (0,X 0 ) to (n,y) that touches the x-axis, you can reflect the first part til it touches the x-axis, to find a path from (0,-X 0 ) to (n,y), and vice versa. Total number of paths from (0,-X 0 ) to (n,y) is easy to count: it’s just C(n,a), where you go up a times and down b times [i.e. a-b = y - (-X 0 ) = y + X 0. a+b=n, so b = n-a, 2a-n=y+x, a=(n+y+x)/2].

Ballot theorem: In n = a+b hands, if player A won a hands and B won b hands, where a>b, and if the hands are aired in random order, P(A won more hands than B throughout the telecast) = (a-b)/n. Proof: We know that, after n = a+b hands, the total difference in hands won is a-b. Let x = a-b. We want to count the number of paths from (1,1) to (n,x) that do not touch the x-axis. By the reflection principle, the number of paths from (1,1) to (n,x) that do touch the x-axis equals the total number of paths from (1,-1) to (n,x). So the number of paths from (1,1) to (n,x) that do not touch the x-axis equals the number of paths from (1,1) to (n,x) minus the number of paths from (1,-1) to (n,x) = C(n-1,a-1) – C(n-1,a) = (n-1)! / [(a-1)! (n-a)!] – (n-1)! / [a! (n-a-1)!] = {n! / [a! (n-a)!]} [(a/n) - (n-a)/n] = C(n,a) (a-b)/n. And each path is equally likely, and has probability 1/C(n,a). So, P(going from (0,0) to (n,a) without touching the x-axis = (a-b)/n.

Avoiding zero. For a simple random walk, for any even # n, P(S 1 ≠ 0, S 2 ≠ 0, …, S n ≠ 0) = P(S n = 0). Proof. The number of paths from (0,0) to (n, j) that don’t touch the x-axis at positive times = the number of paths from (1,1) to (n,j) that don’t touch the x-axis at positive times = paths from (1,1) to (n,j) - paths from (1,-1) to (n,j) by the reflection principle = N n-1,j-1 – N n-1,j+1 Let Q n,j = P(S n = j). P(S 1 > 0, S 2 > 0, …, S n-1 > 0, S n = j) = ½[Q n-1,j-1 – Q n-1,j+1 ]. Summing from j = 2 to ∞, P(S 1 > 0, S 2 > 0, …, S n-1 > 0, S n > 0) = ½[Q n-1,1 – Q n-1,3 ] + ½[Q n-1,3 – Q n-1,5 ] + ½[Q n-1,5 – Q n-1,7 ] + … = (1/2) Q n-1,1 = (1/2) P(S n = 0), because to end up at (n, 0), you have to be at (n-1,+/-1), so P(S n = 0) = (1/2) Q n-1,1 + (1/2) Q n-1,-1 = Q n-1,1. By the same argument, P(S 1 < 0, S 2 < 0, …, S n-1 < 0, S n < 0) = (1/2) P(S n = 0). So, P(S 1 ≠ 0, S 2 ≠ 0, …, S n ≠ 0) = P(S n = 0).

3. Hellmuth and Farha. P(flush | suited)? P(flush | unsuited)? Consider only flushes of your suit. [C(11,3)*C(39,2)+C(11,4)*39+C(11,5)]/C(50,5) = 6.40%. [C(12,4)*38+C(12,4)*38+C(12,5)+C(12,5)]/C(50,5) = 1.85%. 4. Chip proportions and induction. P(win a tournament) is proportional to your number of chips. Simplified scenario. Suppose you either go up or down 1 each hand, with probability 1/2. Suppose there are n chips, and you have k of them. P(win the tournament given k chips) = P(random walk goes from k to n before hitting 0) = p k. Now, clearly p 0 = 0. Consider p 1. From 1, you will either go to 0 or 2. So, p 1 = 1/2 p 0 + 1/2 p 2 = 1/2 p 2. That is, p 2 = 2 p 1. We have shown that p j = j p 1, for j = 0, 1, and 2. (induction:) Suppose that, for j = 0, 1, 2, …, m, p j = j p 1. We will show that p m+1 = (m+1) p 1. Therefore, p j = j p 1 for all j. That is, P(win the tournament) is prop. to your number of chips. p m = 1/2 p m-1 + 1/2 p m+1. If p j = j p 1 for j ≤ m, then we have mp 1 = 1/2 (m-1)p 1 + 1/2 p m+1, so p m+1 = 2mp 1 - (m-1) p 1 = (m+1)p 1.

Another simplified scenario. Suppose you either double each hand you play, or go to zero, each with probability 1/2. Again, P(win a tournament) is prop. to your number of chips. Again, p 0 = 0, and p 1 = 1/2 p 2 = 1/2 p 2, so again, p 2 = 2 p 1. We have shown that, for j = 0, 1, and 2, p j = j p 1. (induction:) Suppose that, for j ≤ m, p j = j p 1. We will show that p 2m = (2m) p 1. Therefore, p j = j p 1 for all j = 2 k. That is, P(win the tournament) is prop. to number of chips. This time, p m = 1/2 p 0 + 1/2 p 2m. If p j = j p 1 for j ≤ m, then we have mp 1 = 0 + 1/2 p 2m, so p 2m = 2mp 1. Example (Chen and Ankenman, 2006). Suppose that a $100 winner-take-all tournament has 1024 = 2 10 players. So, you need to double up 10 times to win. Winner gets $102,400. Suppose you have probability p = 0.54 to double up, instead of 0.5. What is your expected profit in the tournament? (Assume only doubling up.) P(winning) = , so exp. return = ($102,400) = $ So exp. profit = $